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Chaotic properties of dilute two- and three-dimensional random Lorentz gases.
II. Open systems
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We calculate the spectrum of Lyapunov exponents for a point particle moving in a random array of fixed
hard disk or hard sphere scatterers, i.e., the disordered Lorentz gas, in a generic nonequilibrium situation. In a
large system which is finite in at least some directions, and with absorbing boundary conditions, the moving
particle escapes the system with probability one. However, there is a set of zero Lebesgue measure of initial
phase points for the moving particle, such that escape never occurs. Typically, this set of points forms a fractal
repeller, and the Lyapunov spectrum is calculated here for trajectories on this repeller. For this calculation, we
need the solution of the recently introduced extended Boltzmann equation for the nonequilibrium distribution
of the radius of curvature matrix and the solution of the standard Boltzmann equation. The escape-rate for-
malism then gives an explicit result for the Kolmogorov Sinai entropy on the repeller.
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I. INTRODUCTION

In this paper we extend the analysis of the chaotic pr
erties of dilute, random Lorentz gases given in Ref.@1# @de-
noted by~I!# to include open systems with absorbing boun
aries. The Lorentz gas consists of a point particle moving
a system of identical hard disk (d52) or hard sphere (d
53) scatterers of radiusa. In a dilute, random Lorentz gas
the average distance between the scatterers is large com
to their radius,a, and the scatterers are placed at random
the plane or in space without overlapping each other. T
interest in open systems, with absorbing boundaries, is o
sioned by the escape-rate method of Gaspard and Nicoli@2#
which relates the coefficient of diffusion for the moving pa
ticle in the Lorentz gas to the dynamical properties of p
ticles on the set of trajectories that never escape from
system.

The method of Gaspard and Nicolis is based on an id
tity in the theory of open, hyperbolic dynamical system
called the escape-rate formula. This formula is an expres
for the rate of decay of the probability,P(t), of finding a
moving particle in an open region,V, surrounded by absorb
ing boundaries, at timet. If the motion of the moving particle
is hyperbolic, the time dependence ofP(t) is exponential,
decaying as exp(2gt), where the escape-rate,g, is given by

g5 (
l i.0

l i~R!2hKS~R!. ~1!

HereR denotes the set of initial phase points for the mov
particle which are on trajectories that never escape from
system. This set of points is called a ‘‘repeller’’ in the pha
space, typically of measure zero with respect to the us
Lebesgue measure, with unstable and stable manifolds c
acterized by Lyapunov exponentsl i(R), and Kolmogorov–
1063-651X/2000/63~1!/016312~14!/$15.00 63 0163
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Sinai ~KS! entropyhKS(R). The sum in Eq.~1! is only over
the positive Lyapunov exponents, and the Lyapunov ex
nents and KS entropy are to be calculated with respect to
appropriate measure on the repeller@3,4#. Mathematically
rigorous proofs of the escape-rate formula, under a variet
circumstances, have been given by several authors@5–7#,
although the application of interest here, to large, rand
Lorentz gas systems with open boundaries, still needs a
orous proof.

Equation~1! may be considered as the microscopic e
pression for the escape-rate of the particle from the o
region, V. A macroscopic expression for the escape-rate
provided by the diffusion equation satisfied byP(t) on large
time and large space scales,

]P~ t !

]t
5D¹2P~ t !, ~2!

where D is the macroscopic diffusion coefficient for th
moving particle inV. The solution of this equation, for long
times, and for absorbing boundary conditions is of the fo

P~ t !5expF2S c

L2 D DtG , ~3!

whereL is a length characterizing the distance to the abso
ing boundary of interior points inV, and c is a numerica
factor determined by the shape ofV and the absorbing
boundary conditions. Since the microscopic and the mac
scopic expressions for the escape-rate describe the sam
cape process, they have to be identical, which leads to
Gaspard–Nicolis formula
©2000 The American Physical Society12-1
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D5 lim
L→`

L2

c F (
l i.0

l i~R!2hKS~R!G . ~4!

Here the limitL→` is taken to remove finite size correc
tions, including the effects of microscopic boundary laye
It is worth mentioning that the Green–Kubo microscopic e
pressions for the diffusion coefficient,D, and Sinai’s expres-
sion for the sum of positive Lyapunov exponents repres
these quantities as infinite time integrals over appropr
dynamical quantities. In order to apply Eqs.~2!–~4!, without
having to worry about subtleties due to the possible s
convergence of these integrals~due to long-time-tail effects!
we assume that all of the dynamical quantities,l i ,hKS reach
their long-time asymptotic values on a time scale which
short compared to the hydrodynamic time scale on which
diffusion equation applies.~This assumption is certainly
reasonable one for the low density cases we consider h!
The escape-rate formula for diffusion, Eq.~4!, and the gen-
eralizations to other transport coefficients@8#, show a strik-
ing connection between the macroscopic quantities that c
trol hydrodynamic processes, the transport coefficients,
the microscopic quantities that describe the chaotic dynam
taking place on the repeller. A detailed discussion of this
be found elsewhere@9,10#.

The purpose of this paper is to provide an analytical c
culation of the positive Lyapunov exponents on the repel
l i(R), for the random, dilute Lorentz gas, and to use the
together with known values for the diffusion coefficient,D,
to determinehKS(R), the KS entropy of the trajectories o
the repeller. We take the same approach as in I where
used kinetic theory arguments to calculate the Lyapu
spectra of two and three dimensional random, dilute Lore
gases in equilibrium. Here we are concerned with a none
librium situation where particles escape from the system.
will see that spatial inhomogeneities introduced by the
sorbing boundaries will require some significant modific
tions to our previous calculations. There we used mean-f
path arguments and some results from the theory of prod
of random matrices to determine low density values for
individual Lyapunov exponents and we used an exten
Lorentz–Boltzmann equation as an efficient method for
termining the sum of the positive Lyapunov exponents. H
we will do the same for the Lyapunov exponents on
repeller. We mention that before we developed this met
@11# analytical results for Lyapunov exponents on repell
had only been obtained for simple one dimensional mod
@12,13#. Otherwise one had to use numerical methods@14#.

It will be helpful to recall some ideas from I. There w
obtained the individual Lyapunov exponents as well as th
sums in terms of various averages over functions of a ra
of curvature~ROC! matrix r, using an appropriate distribu
tion function. A central notion introduced in I is the use of
extended Lorentz–Boltzmann equation~ELBE! to determine
the distribution of the elements of the radius of curvatu
matrices needed for our calculations. The ELBE was deri
heuristically in I. In the absence of external fields acting
the moving particle it is given by
01631
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]F

]t
1vW •¹F1ṙ:

]F

]r

5nad21E dn̂uvW •n̂uFQ~vW •n̂!E dr8d~r2r8~r!!

3F~rW,vW 8,r8,t !2Q~2vW •n̂!F~rW,vW ,r,t !G . ~5!

The notation is exactly the same as in I. The primed va
ables denote the restituting values, which lead to
unprimed values after a collision, andn̂ denotes a unit vecto
from the center of a scatterer to the point of impact of t
moving particle at a collision. The solution of Eq.~5! is
normalized according to

E dr8F~rW,vW ,r8,t !5 f B~rW,vW ,t !, ~6!

where f B is the solution of the standard Lorentz-Boltzma
equation@16#. In this paper we will assume, as in I, that th
elements of the inverse of the restituting matrix,@r8#21, are
typically small compared to the inverse of the scatterer
dius a21. As a result, we may simplify the delta functio
appearing in the collision integral on the right-hand side
Eq. ~5!.

The plan of the paper is as follows: In Sec. II we discu
the problem of calculating averages on the repeller in ph
space. There we argue that it is necessary to introduc
survival probability for a particle that is inside the system
time t, to be still inside the system at timet1T. We argue
that this probability is needed to guarantee that the prope
we calculate are actually those of the repeller and not me
some asymptotic properties of a set of particles that eve
ally escape from the regionA. ~Not taking this survival prob-
ability into account led to an erroneous result in a previo
publication on this subject, subsequently corrected in an
ratum@11#.! We will set up the formalism that will allow us
to calculate the Lyapunov spectrum on the repeller in S
III. In Sec. IV, we will treat the two dimensional case, and
Sec. V, the three dimensional case. We conclude in Sec
with a summary of our results, a number of remarks, an
discussion of some interesting open questions.

II. AVERAGING ON THE REPELLER

To treat the open system correctly it is necessary to
velop a tool which guarantees that the quantities we calcu
are the actual Lyapunov exponents for trajectories on
repeller. In general, the measure on a repeller is a very
gular object. For large systems we expect that this mea
will be very similar for all typical configurations of scatte
ers, when observed on length scales small compared to
cal macroscopic length scales~system size! but large com-
pared to the mean free path between collisions. There
averages on the repeller may be replaced by averages
smooth reduced distribution functions for the light partic
alone obtained by averaging over all configurations of sc
terers. Further support of this picture is provided by the o
2-2
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CHAOTIC PROPERTIES OF DILUTE . . . . II. . . . PHYSICAL REVIEW E63 016312
servation that for large systems the fractal dimension is c
to the embedding dimension, as follows from Young’s fo
mula @13# relating the Lyapunov exponents to the inform
tion dimension of the repeller.

For dilute Lorentz gases without escape, the probab
density of the ROC matrix elements is obtained as the t
independent solution of the generalized Lorentz–Boltzm
equation forF(r) given by Eq.~5!. For a system with es
cape, the solution of the time dependent Lorentz–Boltzm
equation only determines the probability of finding a parti
at point rW with velocity vW with a ROC matrixr at time t. It
does not contain any information about the future behav
of this particle. More specifically it does not exclude t
possibility of this particle leaving the system at a later tim
t1t. To obtain the smoothed densityon the repellerwe
therefore have to weight this Lorentz–Boltzmann dens
with the survival probability. This is the conditional prob
ability S(rW,vW ,tut1T), that a particle at pointrW with velocity

vW at time t will still be in the system at the timet1T. It does
not depend onr because all trajectories in a bundle are
finitesimally close to each other. The introduction of the s
vival probability in order to obtain a proper description
the repeller is very reminiscent of, and essentially identi
to, methods used to compute fractal dimensions and o
properties of attractors and repellers in more traditional
namical systems calculations@13,15#.

The survival probability that we need,S(rW,vW ,tut1T), can,
in d dimensions, be written as an integral over the con
tional probabilityS(rW,vW ,turW8,vW 8,t1T) as

S~rW,vW ,tut1T!5E ddrW8ddvW 8S~rW,vW ,turW8,vW 8,t1T!, ~7!

with initial condition

S~rW,vW ,turW8,vW 8,t !5d~rW2rW8!d~vW 2vW 8!. ~8!

The average of a functiong(r) on the repeller is then
given by

^g~r!&Rep

5 lim
t→`

lim
T→`

E drdrWdvW F~rW,vW ,r,t !S~rW,vW ,tut1T!g~r!

E drdrWdvW F~rW,vW ,r,t !S~rW,vW ,tut1T!

.

~9!

The limit T→` has to be taken first, to guarantee th
only the trajectories which never leave the system
counted. The limits of numerator and denominator van
separately, since the repeller is a set of Lebesgue mea
zero. The conditional probabilityS(rW,vW ,turW8,vW 8,t1T) is the
solution of the ordinary Lorentz–Boltzmann equation f
open systemsf S(rW8,vW 8,t1T) with the initial condition speci-
fied in Eq.~8!. Due to time reversibility and time translatio
invariance, this probability is the same as that for finding
01631
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particle at pointrW with velocity 2vW at time t, that was at
point rW8 with velocity 2vW 8 at time t2T. Thus,

S~rW,vW ,turW8,vW 8,t1T!5S~rW8,2vW 8,t2TurW,2vW ,t !

5S~rW8,2vW 8,0urW,2vW ,T!. ~10!

The integration in Eq.~7! with respect torW8 andvW 8 allows
us to replace S(rW,vW ,tut1T) by the solution, f S(rW,
2vW ,T)Nd(v2v0), of the Lorentz–Boltzmann equation wit
homogeneous initial conditionf S(rW,2vW ,0)51. HereN is a
normalization constant given byN5(2pv0)21 and
(4pv0

2)21 in two and three dimensions, respectively. That
we need the long time solution of the Lorentz–Boltzma
equation, with absorbing boundary conditions, and with
initial condition which is uniform in space and in velocit
directions. Such a solution will not stay uniform due to t
escape of particles through the absorbing boundaries.

Therefore Eq.~9! is equivalent to

^g~r!&Rep

5 lim
t→`

lim
T→`

E drdrWdvW F~rW,vW ,r,t ! f S~rW,2vW ,T!g~r!

E drdrWdvW F~rW,vW ,r,t ! f S~rW,2vW ,T!

.

~11!

Equation~11! reduces the calculation of the sum of th
Lyapunov exponents and the maximum Lyapunov expon
on the repeller to standard integrations, when the solution
the Lorentz–Boltzmann equation forf S(rW,2vW ,T) and that of
the ELBE for F are obtained. In the following sections w
will solve these equations for large systems with absorb
boundary conditions. For long times,t, the solution of the
ELBE for F will be obtained as a generalized Chapma
Enskog@16# expansion of the form

F~rW,vW ,r,t !5Nd~v2v0!~c0~r!nm~rW,t !1c1~r!vW •¹nm~rW,t !

1c2~r!v2¹2nm~r ,t !1••• !. ~12!

Also nm(rW,t) is the slowest decaying eigenmode of th
diffusion equationwith the given absorbing boundary cond
tions,

nm~]V!50. ~13!

In second order in the gradient we have kept only the sc
part ¹2nm . A possible contribution of order¹2 to the
Lyapunov exponents from a term in Eq.~12! proportional to
the traceless tensorvv2(v2/d)1 vanishes after integration
with respect to the velocity and is therefore neglected in t
equation. The solution of the usual Lorentz–Boltzma
equation forf S(rW,2vW ,T) can also be written as a Chapman
Enskog expansion
2-3
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f S~rW,2vW ,T!5Nd~v2v0!~nm~rW,T!

2cdvW •¹nm~rW,T!1••• !. ~14!

The constants in Eq.~14! arec2523/(4n) andc3521/n in
two and three dimensions respectively, wheren is the mean
collision frequency. Due to the normalization condition, E
~6!, the functionsc i in Eq. ~12! have to fulfill the conditions

E dr8c0~r8!51, ~15!

E dr8c1~r8!5cd , ~16!
d

q

or
ri
.

ti
nt
b

in
r

si

b
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.

E dr8c2~r8!50. ~17!

It is important to note that in Eqs.~12! and ~14!, the

eigenmodesnm(rW,t) andnm(rW,T) have the functional forms

n0(rW)exp@2tv# and n0(rW)exp@2Tv#, respectively, wherev
denotes the eigenvalue of the slowest decaying mode of

diffusion equation, andn0(rW) is the corresponding eigen
function.

Using Eqs.~12–17! we can write Eq.~11! as
^g~r!&Rep5

E drE ddr Fc0n0
2~rW !2v0

2S cd

d
c11c2D ~¹n0~rW !!2Gg~r!

E ddr S n0
2~rW !2

v0
2cd

2

d
~¹n0~rW !!2D 1•••. ~18!
nd-
n-
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We note that exponentially decaying factors have cancele
the numerator and denominator of Eq.~18!.

Since we only kept terms up to the order¹2 when deriv-
ing Eq. ~18!, we also have to expand the denominator in E
~18!. The final result for averaging a quantityg(r) on the
repeller, up to and including terms of order¹2, is given by

^g~r!&Rep5E drH c01Fcd
2

d S c02
c1

cd
D2c2Gv0

2q̄2J g~r!

1•••, ~19!

with

q̄25

E ddr ~¹n0~rW !!2

E ddrn0
2~rW !

. ~20!

The quantityq̄ may be interpreted as a wave vector. If, f
example, a system is considered with absorbing bounda
at x56L/2, but of infinite extent in other directions, Eq
~20! can be evaluated to show thatq̄[qx

min5(p/L) is the
smallest possible wave vector in thex direction. We will
consistently neglect effects due to microscopic, kine
boundary layers near]V, since such effects are unimporta
in the escape-rate formalism as the size of the system
comes large.

That this is the case can be understood in the follow
way: The fraction of the volume taken up by the bounda
layers is of orderl/L with l the mean free path andL a
length of the order of the diameter of the system. The den
in the boundary layer is equally of orderl/L compared to
the average density in the system, as a result of the absor
in

.

es

c

e-

g
y

ty

ing

boundary condition. Finally the escape rate near the bou
ary is of similar order, as it is proportional to the local de
sity. As a result the effects of the boundary layer are of or
(l/L)3, whereas here we will be interested in terms of ord
(l/L)2 only.

III. LYAPUNOV EXPONENTS

The strategy presented so far is applicable to the calc
tion of all quantities which can be written as ensemble av
ages of functions of the ROC matrix. In our case this alwa
happens, if a quantity is given as a time average ove
function of r(t). The sum of the positive Lyapunov expo
nents fulfills this property as shown by Sinai@17#. We as-
sumethat trajectories on the repeller for the Lorentz gas
sufficiently ergodic, so that we can write the sum of t
exponents as an average over the appropriate ensemb
ROC matrices~see also I!:

(
l i.0

l i~R!5v^Trace~r21!&Rep. ~21!

In two dimensions this is trivially also the largest expone
The maximum Lyapunov exponent in 3 dimensions is n
calculated as a time average, but as an average over a
tion of time of free flight and collision parameters. The sep
ration of trajectories at a given time can then be written
product of matrices, each describing the propagation of
ROC between two collisions, as explained in I@1#. Using an
identical method, we find

drW'~ t !5)
i 51

N

Ui~t i ,f i ,a i !drW'~0!,
2-4
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with

Ui~t i ,f i ,a i !5T expS E
t i

t i 11
vr21~ t8,f i ,a i !dt8D .

~22!

Heref i anda i are the scattering angles at thei th collision
andt i5t i 112t i is the time of free flight between thei th and
( i 11)th collision. It is important to notice that Eq.~22! can-
not be written in terms of a time integral over a local fun
tion of r(t), since theUi matrices typically do not commut
with each other.

Since for dilute Lorentz gases correlations between co
sion events are not important in the limit of low densities,
can make the approximation that the matricesUi are inde-
pendent, randomly, and to the order in gradients that we
here, isotropically distributed matrices, each with indep
dent free flight times and collision parameters selected fr
appropriate distributions, to be discussed below@18#. We
will postpone a discussion of the isotropy of theU matrices
until Sec. V and Appendix B, where we will calculate th
largest Lyapunov exponent for three dimensional syste
The maximum Lyapunov exponent is then given by

lmax~R!5 lim
N→`

1

(
i 51

N

t i

(
i 51

N

ln~ uUi•eW u!, ~23!

whereeW is an arbitrary unit vector normal to the velocityvW .
As in the case of infinite systems, we now write the rig
01631
i-

se
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hand side of Eq.~23! as an average over the distribution
the matricesUi . To do this we have first to derive the dis
tribution of particles, which collided a time of free flightt

ago,f F(rW,vW ,t,t), for an open system. This is done in Appe
dix A. Then we have to make sure that the average is
stricted to the repeller. This can be achieved as describe
Sec. II by using the survival probability. We argue as fo

lows: To determine the appropriate average of ln(uUi•eW u),
one needs the distribution of particles that have collided a

point rW, with the scattering anglesf,a, that have the velocity

vW after collision, and that travel freely for a timet until the
next collision. Further, to include only trajectories on t

repeller, we again need the survival probability,S(rW,vW ,tut
1T), for a particle withrW,vW at timet to remain in the system
at least until timet1T. We can express the distribution o

particles colliding at pointrW and having velocityvW after col-
lision in terms of the distribution of particles arriving to co

lide at pointrW with the restitutingvelocity vW 8, since the rate
at which particles arrive at a scatterer before collision sho
be equal to the rate at which they leave the scatterer a
collision. The former rate can be calculated from kine
theory without difficulty due to the assumption of molecul
chaos, while the latter rate requires that correlations betw
particles and scatterers, produced by a collision, be ta

into account. Note also thatuvW •n̂u5uvW 8•n̂u, and thatvW •n̂

>0, while vW 8•n̂<0. We finally arrive at the following gen-
eral expression for the maximum Lyapunov exponent of
open system,
from the
es whose

catterers.
In Eq.
lmax~R!5ncr^ lnuU•eW u&cr5 lim
T→`

ncr

E dtdn̂drWdvW un̂•vW uQ~ n̂•vW ! f F~rW,vW 8,t,t ! f S~rW,2vW ,T!lnuU•eW u

E dtdn̂drWdvW un̂•vW uQ~ n̂•vW ! f F~rW,vW 8,t,t ! f S~rW,2vW ,T!

. ~24!

Here^&cr is used to distinguish the present average of variables that are calculated only at the instants of collisions
preceding ones. Further the integrands in both numerator and denominator take into account the effects of particl
velocities are changed fromvW 8 to vW at timet, before which a free flight time oft takes place. Thus,f F(rW,vW 8,t,t) is the density
of particles with velocityvW 8, before collision, at the pointrW and timet, which had a time of free flight time of lengtht before
the collision, andncr is the average collision frequency for trajectories on the repeller. Here

vW 85vW 22~vW •n̂!n̂ ~25!

andn̂ is the unit vector pointing from the center of the sphere~or disk! to the point of impact. The factorun̂•vW u appears in the
integrals when one takes into account the rate at which collisions take place between the moving particle and the s
Equation~24! should be compared with Eq.~9!. The mathematical meanings of these averages are, of course, different.
~9! the function to be averaged depends on the random matrixr and the phase space variablesrW andvW . In Eq.~24!, the average
depends on the random variables time of free flightt, collision vectorn̂ and phase space variablesrW andvW . But in both cases
the average is restricted to the repeller.
2-5
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The distribution of times of free flightf (rW,vW ,t,t), and therefore the average on the repeller, can be expressed
expansion in gradients of the density:

f F~rW,vW ,t,t !5d~v2v0!~c0
F~t!nm~rW,t !1c1

F~t!vW •¹nm~rW,t !1c2
F~t!v2¹2nm~r ,t !!. ~26!

The functionsc i
F are calculated in Appendix A for two and three dimensions. By substituting Eqs.~26! and ~14! for f F and

f S , respectively, one finds that through second order in the gradient, Eq.~24! assumes the form

lmax~R!5ncr

E dtdn̂un̂•vW uQ~ n̂•vW !S c0
F2S cd

d
c1

F~122~ n̂• v̂ !2!1c2
FD q̄2v0

2D lnuU•êu

E dn̂un̂• v̂uQ~ n̂• v̂ !S 12
cd

2

d
~122~ n̂• v̂ !2!q̄2v0

2D . ~27!
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Here a number of simplifications have already been ma
All terms that are odd in the velocity have been left out sin
they yield zero on integration. Second order terms in
denominator that give zero on integration over the veloc
due to the normalization of the Chapman–Enskog solu
have been left out likewise. Furthermore terms of the fo

v̂ v̂:¹n¹n f(v) have been replaced by (1/d)u¹nu2f (v),
which gives the same result on integrating over veloc
Finally the factor 122v̂•n̂ results from integratingv̂8•¹n

5( v̂22(v̂•n̂)n̂)•¹n over n̂. The components ofn̂ normal
to v̂ give vanishing contributions. By defining the consta
A5*dn̂un̂vW u(122(n̂• v̂)2)/*dn̂un̂• v̂uQ(n̂• v̂), which van-
ishes ind53 and equals21/3 in d52, and expanding Eq
~27! up to orderq̄2, we obtain the final result

lmax~R!5ncrE dtdn̂un̂• v̂uQ~ n̂• v̂ !

3H c0
F2S c2

F~t!2
cd

2

d
Ac0

F~t!

1
cd

d
c1

F~122~ n̂• v̂ !2! D q̄2v0
2J

3
lnuU•êu

E dn̂un̂• v̂uQ~ n̂• v̂ !

. ~28!

IV. LYAPUNOV EXPONENT IN TWO DIMENSIONS

There is only one positive Lyapunov exponent in two
mensions. Therefore the positive Lyapunov exponent can
ther be calculated with the help of Eq.~21!, i.e., formally as
the sum of the positive Lyapunov exponents or as the m
mum Lyapunov exponent with the help of Eq.~24!. We will
use both methods, to demonstrate that the two approa
lead to the same result. For the two-dimensional Lorentz
the radius of curvature matrix reduces to a scalar,r, the
radius of curvature of two nearby trajectories~see@11# and
I!, and the ELBE has as variablesrW,vW , andr. In this case, the
01631
e.
e
e
y
n
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t
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es
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ELBE, Eq. ~5! has the form@11,1#

]F

]t
1vW •

]F

]rW
1v

]

]r
F1nF

5
n

2E2p/2

p/2

df cosfdS r2
a

2
cosf D f B~rW,vW 8,t !.

~29!

Here we have supposed that the typical value ofr before
collision is of the order of the mean free path length, and
delta function appearing in Eq.~5! has been simplified to tha
appearing in Eq.~29!. The solution of the ELBE is normal
ized according to Eq.~6!. With vW 8 we denote the velocity of
a particle immediately before the collision, which results in
velocity vW after the scattering event~25!. For the solution of
Eq. ~29! we impose the boundary condition thatF vanishes
both at zero and at infinite values ofr, i.e.,

F~rW,vW ,r50,t !5 lim
r→`

F~rW,vW ,r,t !50. ~30!

We impose the boundary condition atr50, because the ra
dius of curvature increases during free motion of the partic
collisions never reduce its value to zero, and all trajector
with an initial negative value for the radius of curvature w
acquire positive radius of curvature with probability one. T
negative sign of the radius of curvature is conserved only
the stable manifold, which has Lebesgue measure zero in
phase space.

The integration overf can now be performed and w
obtain from Eq.~29!

]F

]t
1vW •

]F

]rW
1v

]

]r
F1nF

5
n

a
Q~12s!

s

~12s2!1/2
~ f B~rW,vW 18 ,t !

1 f B~rW,vW 28 ,t !!. ~31!
2-6
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wheres52r/a<1. The velocitiesvW 68 result from the evalu-
ation of the delta function at precollisional velocities whi
satisfy the relationvW •n̂5sv. We may use the expansion E
~14! for the Lorentz–Boltzmann densityf B(rW,vW ,t), by re-
placing 2vW in Eq. ~14! by vW . Then we use the relation
n̂(2f)52n̂(f)12 cosf v̂ to obtain, from Eq.~31!, an
equation for the distribution function F̃(rW,vW ,s,t)
5aF(rW,vW ,r,t)/2 given by

]F̃

]t
1vW •

]F̃

]rW
1

2v
a

]

]s
F̃1nF̃

5nQ~12s!
s

~12s2!1/2

3S nm~rW,t !2
3

4n
~122s2!vW •¹nm~rW,t ! D .

~32!

Using the Chapman–EnskogAnsatz, Eq. ~12!, for F̃, we
obtain equations forc0 ,c1 and c2 by comparing equal or-
ders of the gradients of the densitynm on both sides of Eq.
~32!. The zeroth-order equation is~@11# and I!

2v
a

]

]s
c01nc05nQ~12s!

s

~12s2!1/2
, ~33!

with solution

c0~s!5H an

2v
e2nsa/(2v), for s.1

an

2v
@12~12s2!1/2#, for s,1.

~34!

This solution is continuous ats51 and fulfills the normal-
ization condition Eq.~15! up to corrections of relative orde
ñ5na2.

By equating the terms to first order in the gradient in t
density in Eq.~32!, we obtain an equation forc1, given by

c0~s!1
2v
a

]

]s
c11nc152

3

4
Q~12s!

s~122s2!

~12s2!1/2
.

~35!

Here we used the fact that the time derivative]nm /]t is of
second order in the gradient—via the diffusion equation. T
solution of Eq.~35! satisfies the normalization condition E
~16! with c2523/(4n). This can easily be seen by integra
ing both sides of Eq.~35! with respect tos. The solution of
Eq. ~35! has to be continuous ats51 and it is given by
01631
e

c1~s!55 2
na2

4v2
se2nsa/(2v)1

a

8v
e2nsa/(2v), for s.1

a

8v
@12~12s2!1/2~112s2!#, for s,1.

~36!

By comparing the terms in order¹2nm in Eq. ~32!, we
obtain the equation forc2 given by

D

v2
c0~s!1

1

2
c1~s!1nc2~s!1

2v
a

d

ds
c2~s!50.

~37!

Here we used the diffusion equation for the densitynm

]

]t
nm~rW,t !5D¹2nm~rW,t !, ~38!

and the Chapman–Enskog solvability condition, Eq.~17!.
The low density value of the diffusion coefficientD in two
dimensions isD53v2/(8n). For our purposes it is sufficien
to write the solution of Eq.~37! in the form

c2~s!52e2nas/2vE
0

s

ds8e
nas8

2v S D

v2
c0~s8!1

1

2
c1~s8!D .

~39!

Once we knowc0 ,c1, andc2 we can obtain averages o
the repeller using Eq.~19!. The positive Lyapunov exponen
is @see Eq.~21!#

l1~R!5
2v0

a K 1

s L
Rep

, ~40!

K 1

s L
Rep

5E dsS c01S 9

32n2 S c01
4nc1

3 D2c2D v0
2q̄2D 1

s
.

~41!

Using Eqs.~34!, ~36!, ~39! we can now calculate the re
sult in the lowest order in the density by standard integ
tions, and we obtain, to second order in the gradients,

l1~R!5l0
11S l0

1

n
2

1

2DDq̄2. ~42!

Herel0
1 is the equilibrium solution for the Lyapunov expo

nent of an infinite system~ @11#, I! given by

l0
152nav@2 ln~2na2!112C#, ~43!

whereC is Euler’s constant.
We can also use the method for the calculation of

largest Lyapunov exponent to obtain the result forl1 as an
average over the distribution of time of free flight on th
repeller. The rank of the matrixU, defined in Eq.~22! is
unity in two dimensions, i.e,U is a scalar given by
2-7
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U5S 11
2vt

a cosf D . ~44!

The leading contribution in the low density approximation
obtained by keeping only the term proportional tot in Eq.
~44!. The maximum Lyapunov exponent is then in leadi
order

l1~R!5
1

^t&cr
K lnS 2v

a
t D2 ln cosf L

cr

. ~45!

By using Eqs.~26!, ~28!, and~A3! for the distribution of
times of free flight in two dimensions, we can easily recov
the result, Eq.~42!.

V. LYAPUNOV EXPONENTS IN THREE DIMENSIONS

The ELBE for the three-dimensional Lorentz gas can
solved by choosing an appropriate parameterization of
~ROC! matrix r. Starting from Eq.~5! we can simplify the
delta function appearing in the restituting part of the collisi
operator~see I!, so as to obtain

]F

]t
1vW •

]F

]rW
1vS ]

]r11
1

]

]r22
DF

52nF1
n

pE0

p/2

dfE
0

2p

da sinf cosf

3)
i< j

d~r i j 2r i j ~f,a!!

3E dr118 E dr128 E dr228 F~rW,vW 8,r8,t !. ~46!

Here the average~infinite system and low density! colli-
sion frequency,n, is n5na2vp. The ROC matrix is sym-
metric, therefore only three parameters are necessary to
scribe its behavior. As shown in I it is convenient to use
eigenvaluesr1 ,r2 and the off diagonal elementr12 as pa-
rameters. Together with the normalization condition Eq.~6!
and the solution of the Lorentz–Boltzmann equation a
gradient expansion, given by Eq.~14!, with 2vW replaced by

vW , andc3521/n,

f B~rW,vW ,t !5Nd~v2v0!S nm~rW,t !2
1

n
vW •¹nm~rW,t !1••• D ,

~47!

with N defined below Eq.~8!. We find that Eq.~46! can be
written as
01631
r

e
e

e-
e

a

]F̃

]t
1vW •

]F̃

]rW
1vS ]

]r1
1

]

]r2
D F̃1nF̃

5
n

pE0

p/2

dfE
0

2p

da sinf cosfucos 2au

3dS r12
a

2
cosf D dS r22

a

2 cosf D
3d~r121~a cosf tan2f sin 2a!/4! f B~rW,vW 8,t !.

~48!

The factorucos 2au results from the transformation from th
variablesr11,r22,r12 to r1 ,r2 ,r12 in the d-functions in the
right-hand side of Eq.~46!, and we setF̃(r1 ,r2 ,r12)
5F(r11,r22,r12). Please note, thatF̃ is not yet normalized
with respect tor1 ,r2 ,r12. The velocityvW 8 before the colli-
sion depends on the collision anglesa and f, through the
relation

vW 85vW 22~ n̂•vW !n̂,

with

n̂5cosf v̂1sinf cosa v̂',11sinf sina v̂',2 , ~49!

and the unit vectorsv̂,v̂',1 ,v̂',2 form an ortho-normal set.
Now, using Eq.~47!, we can perform thea integration,

and we keep only the non-vanishing terms in thef integra-
tion. After integrating overa and makingf B explicit, we find
that we can rewrite Eq.~48! as

F ]F̃

]t
1vW •

]F̃

]rW
1vS ]

]r1
1

]

]r2
D F̃1nF̃G

5
8nN
pa E

0

p/2

df sinf cot2f

3QS 12U 4r12

a cosf tan2f
U D dS r12

a cosf

2 D
3dS r22

a

2 cosf D d~v2v0!S nm~rW,t !2
1

n

3~122 cos2f!vW •¹nm~rW,t !1••• D . ~50!

Here we have explicitly indicated only the terms needed
our further calculations. It is now convenient to introduce t
definitions 2r i /a5s i and 2r12/a5s12, and to perform the
f integration. We find that
2-8
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F ]F̃

]t
1vW •

]F̃

]rW
12v/aS ]

]s1
1

]

]s2
D F̃1nF̃G

5
32nN
pa3

QS 12U2s1s12

12s1
2 U D Q~12s1!

s1
2

12s1
2

3dS s22
1

s1
D d~v2v0!S nm~rW,t !2

1

n

3~122s1
2!vW •¹nm~rW,t !1••• D . ~51!

We point out thatF̃ is not normalized with respect t
s1 ,s2, ands12, since we have not yet introduced the app
priate Jacobian. Equation~51! can be further simplified by
introducing a new set of variables (0<s,0<z<1,2p/2<g
<p/2), defined by the relations

s15z1s,

s25
1

z
1s,

s125sin~g!
12z2

2z
. ~52!

The normalized distribution function f̃ (rW,vW ,s,z,g,t)
5J(s,z,g)F̃(rW,vW ,r1 ,r2 ,r12,t) obeys the equation

] f̃

]t
1 ]̃ f̃ 1

2v
a

]

]s
f̃ 1n f̃

5
2nN

p
zQ~12z!Q~z!Q~p/22g!Q~g1p/2!

3d~s201!d~v2v0!S nm~rW,t !2
1

n

3~122z2!]̃nm~rW,t ! D , ~53!

where]̃5vW •¹, andJ(s,z,g) is the Jacobian given by

J~z,s,g!5U]~r11,r22,r12!

]~r1 ,r2 ,r12!
UU ]~r1 ,r2 ,r12!

]~s1 ,s2 ,s12!
UU]~s1 ,s2 ,s12!

]~s,z,g!
U

~54!

5
a3

16

~11z2!~12z2!

z3
. ~55!

We point out that this Jacobian is independent ofs. It guar-
antees the proper normalization off̃ as

E
0

`

dsE
0

1

dzE
2p/2

p/2

dg f̃ ~rW,vW ,s,z,g,t !5 f B~rW,vW ,t !, ~56!
01631
-

where f B is the solution of the standard nonequilibriu
Lorentz–Boltzmann equation.

The physical meanings ofs, z, andg become a bit more
transparent if we consider Eq.~52! and Eq. ~53! in more
detail. We begin by noting, that the distribution functio
F(rW,vW ,r1 ,r2 ,r12,t), for the two eigenvalues and the off d
agonal element of the ROC matrix is established through
dynamic process involving intervals of free flight separa
by collisions of the moving particles with the scatterers. T
time dependence of the ROC matrix can be completely
pressed in terms of scattering angles and time of free flig
In ~I! it was shown that the eigenvalues of the ROC mat
increase linearly in time during a free flight and the off d
agonal element stays constant. The reparametrization
~52! exactly reflects this behavior. We can see that the
mensionless parameter s corresponds to the time of fli
which is also clear since thed - function in s in the right-
hand side of Eq.~53! shows that the gain term is a source
particles with a free flight time of zero. From Eq.~52! we can
then conclude thatz, respectively 1/z, correspond to the pos
sible values of normalized eigenvaluess1 , s2 at the colli-
sion. Equation~48! shows thatz is physically the cosine of
the scattering anglef. With the same arguments, it can b
seen that up to a factor of 2,g finds its physical correspon
dence in the azimuthal scattering anglea.

As one might suspect here, the solution of Eq.~53! can be
interpreted as a joint distribution function for time of fre
flight and collision parameter. This may seem surprising
first, because the latter are statistically independent qua
ties. Correlations inf̃ however, are the result of considerin
this function at fixed time and position. In a comoving fram
i.e., cconsidering f̃ (rW2(a/2)s v̂,vW ,s,z,g,t2as/2v), one
would find the variabless, z, and g to be uncorrelated in-
deed.

The distribution of times of free flight in 3 dimensions E
~A1! can be recovered, if we integrate Eq.~53! overz andg
and identifyas/(2v) with t:

f F~rW,vW ,t!5
a

2vE2p/2

p/2

dgE
0

1

dz f̃S rW,vW ,
2v
a

t,z,g D . ~57!

For large systems, we can solve Eq.~53!, as in the 2
dimensional case, by using a gradient expansion

f̃ 5d~v2v0!NQ~p/22g!Q~g1p/2!S nm~rW,t !c̃0~s,z!

1
a

2v
]̃nm~rW,t !c̃1~s,z!1

a2

4
¹2nm~rW,t !c̃2~s,z!1••• D .

~58!

The solution of Eq.~53! has to satisfy the relation~56! The
quantity c̃0(s,z) was already obtained in I. It satisfies th
equation

d

ds
c̃01 ñc̃05

2ñ

p
Q~12z!Q~z!zd~s201!, ~59!
2-9
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where the dimensionless collision frequency isñ5(a/2v)n.
The solution of Eq.~59! is

c̃0~s,z!5
2ñ

p
Q~12z!Q~z!zQ~s!e2 ñs. ~60!

The equation forc̃1 is obtained by keeping only the term
proportional to]̃nm

c̃01
d

ds
c̃11 ñc̃15

22

p
Q~12z!Q~z!z~122z2!d~s201!.

~61!

This equation is easily solved to give

c̃1~s,z!5
22ñ

p S sz1
1

ñ
z~122z2!D

3Q~12z!Q~z!Q~s!e2 ñs. ~62!

Considering the terms of order¹2nm(rW,t) and keeping only
the scalar part of]̃ ]̃, we obtain the equation forc̃2

D̂c̃01
1

3
c̃11

d

ds
c̃21 ñc̃250. ~63!

Here the Chapman–Enskog solvability condition Eq.~17!
and the diffusion equation fornm , Eq. ~38! were used. We
also introduced the dimensionless diffusion coefficientD̂
5(2/av)D. The solution of this equation is given by

c̃2~s,z!5
2ñ

p S 2D̂sz1
1

6
s2z1

1

3ñ
sz~122z2!D

3Q~12z!Q~z!Q~s!e2 ñs. ~64!

The formulas for the sum of the Lyapunov exponents a
the maximum Lyapunov exponent in equilibrium were o
tained in I. The same formulas are valid in the nonequil
rium case, if the averages are replaced by averages on
repeller. For the sum of the Lyapunov exponents Eq.~19!
gives

a

2v (
l i.0

l i~R!5 K S 1

z1s
1

1

1/z1sD L
Rep

, ~65!

while Eq. ~28! leads to

lmax~R!5ncr^ lnuU~cosf,a,t!•eWcu&cr , ~66!

with the average collision frequency on the repellerncr
51/̂ t&cr and

uU~z,a,t!•eWcu5
2vt

a
A11z41~12z4!cos 2~c2a!

2z2

~67!
01631
d
-
-
the

with z5cosf, as derived in I. The anglec specifies the
direction of the unit vectoreWc in the plane perpendicular to
the trajectory. In general an additional average over its
tionary distributionP(c) is necessary. However, it can ea
ily be shown that the corrections to an isotropic distributi
of directionsP(c) are at most of order cosc¹2n(r,t) and do
not contribute to the average in Eq.~66! in order ¹2n(r ,t)
~see Appendix B!.

Now, using Eqs.~65!, ~19!, we are led to the determina
tion of the sum of the positive Lyapunov exponents, and
obtain, to second order in the gradients,

lmax
1 ~R!1lmin

1 ~R!5hKS
0 2Dq̄2~112~ ln~ ñ/2!1C!!,

~68!

with ñ5npa352ñ. Here,hKS
0 is the KS-entropy for an in-

finite system@I# at equilibrium given by~69!, C is Euler’s
constant, andq̄ is defined by~20!, and

hKS
0 52na2vp@2 ln~ ñ/2!2C#1•••. ~69!

with the dots indicating higher density corrections.
This expression for the sum of the Lyapunov expone

can also be calculated by averaging ln detU5Trace lnU over
the distribution of times of free flight and the scatterin
angles V with the help of Eq. ~28!, and by replacing
lnuU•eW u with Trace lnU. In leading order for large times o
free flight, i.e., small density of scatterers, we obtain

lmax
1 ~R!1lmin

1 ~R!5ncr^Trace ln~vr1
21t!&cr . ~70!

The matrix r1 is the ROC immediately after a scatterin
event. It depends in leading order in the density only on
scattering anglesf anda and is defined in paper I. Here it i
only important to notice that it has eigenvaluesr1
5(a/2)cosf andr25a/(2 cosf). The trace of the logarithm
in Eq. ~70! leads therefore to a cancellation of the term
depending on ln cosf, so that we only have to evaluate

lmax
1 ~R!1lmin

1 ~R!52ncrK lnS 2v
a

t D L
cr

. ~71!

This strategy also leads to the result Eq.~68!.
With the help of Eqs.~66!, ~67!, ~24! and Appendix A the

maximum Lyapunov exponent is given, to second order
the gradients, by

lmax
1 ~R!5lmax

0 1Dq̄2S 2 ln~ ñ/2!2C1
1

4
2 ln 2D , ~72!

where lmax
0 is the equilibrium value of the maximum

Lyapunov exponent for an infinite system

lmax
0 5na2vp@2 ln~ ñ/2!1 ln 22 1

2 2C#1•••. ~73!

The expression for the smallest positive Lyapunov ex
nent can be obtained, to second order, from Eqs.~68! and
~72!, as
2-10
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lmin
1 ~R!5lmin

0 1Dq̄2~2 ln~ ñ/2!2C2 5
4 1 ln 2!•••,

~74!

with

lmin
0 5na2vp@2 ln~ ñ/2!2 ln 21 1

2 2C#1•••. ~75!

VI. DISCUSSION

We have now calculated, analytically, the spectrum
positive Lyapunov exponents on the repeller for the op
dilute, random Lorentz gas in two and three dimensio
Then using the escape-rate formula we may infer the va
of the KS entropies on the repeller as well. We find that
corrections to the equilibrium values of the Lyapunov exp
nents and KS entropies are of order 1/L2 whereL is some
characteristic size of the open system. We should point
that Gaspard has discussed a reformulation of the escape
formula so as to be able to express the diffusion coeffic
in terms of the Hausdorff dimension of the fractal repel
@9#. Using his method we can easily see that the dimens
of the fractal repeller is slightly less than the embedd
dimension (3 ford52, and 5 ford53) by terms of order
1/L2. These results are to be expected for the Lorentz
since diffusion is normal, and the escape-rate formula sho
be free of difficulties.

Gaspard and Baras@14# have examined the chaotic prop
erties of the periodic open Lorentz gas at sufficiently h
densities that there are no infinite horizons for the mov
particle. They used numerical simulations, and obtained
dependent results for the Lyapunov exponents and for the
entropy on the repeller, as functions of the system sizeL.
Then they compared these results with numerical and w
approximate analytical values for the diffusion coefficie
and found good agreement.

At the present time there are no computer simulations
open, random Lorentz gases, to which our analytic res
can be compared, but we may compare our results to in
tive expectations. To do this we will need to note that t
average collision frequency,ncr or equivalently, the mean
free time between collisions on the repeller,tcr51/ncr , dif-
fer from the corresponding quantities in an infinite system
fact tcr can explicitly be calculated by using an express
analogous to Eq.~28!, where lnuU•êu is replaced byt and the
factor ncr is dropped. Together with the expressions forc̃ i

F

in two and three dimension Eqs.~26!, ~A3!, and ~A4! we
obtain an expression for the mean free time between c
sions on the repeller given by

tcr[
1

ncr
5

1

n
2

D

n2
q̄2. ~76!

This result shows that the mean free time on the repe
is smaller than that in the infinite system. In addition,
dependence on the escape-rate and equilibrium collision
quency is the same in two and three dimensions. Thus,
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see that trajectories on the repeller are constrained to h
higher collision frequency than those for the infinite, equili
rium system.

The Lyapunov exponents, i.e., the rates of separation
trajectories, are larger on the repeller than in the infinite s
tem. One might have expected, that due to the restriction
the available phase space volume for a particle on the re
ler, the rate of separation might have been smaller on
repeller, but the increased scattering rate counteracts thi
fect. However, if we compensate for this effect by express
the Lyapunov exponents in units of the mean free time on
repeller, the terms proportional toq̄2 lead to a decrease of th
Lyapunov exponents because on average ln(l/a) decreases.
Using Eqs.~42! and ~76! for two dimensions and Eqs.~68!,
~72!, ~74!, and~76! for three dimensions, the Lyapunov ex
ponents in natural units on the repeller are given by

l1~R!tcr5
l0

1

n
2

1

2

D

n
q̄2 in two dimensions, ~77!

and for three dimensions

lmax
1 ~R!tcr5

lmax
0

n
2

D

n
q̄2S 8 ln 223

4 D ,

lmin
1 ~R!tcr5

lmin
0

n
2

D

n
q̄2S 728 ln 2

4 D ,

~lmax
1 ~R!1lmin

1 ~R!!tcr5
hKS

0

n
2

D

n
q̄2. ~78!

It is also interesting to compare the KS entropy on t
repeller with its value in an infinite system. To make this
bit more concrete, we consider a slab geometry, i.e., abs
ing walls atx56L/2, and

q̄5
p

L
. ~79!

Then with Eqs.~42! and ~68!, respectively, we obtain

hKS~R!5hKS
0 1S hKS

0

n
2

3

2DD~p/L !2 in two dimensions,

~80!

hKS~R!5hKS
0 1S hKS

0

n
22DD~p/L !2 in three dimensions.

~81!

Thus the KS entropy increases above its infinite system va
when measured in standard time units. As in the case of
Lyapunov exponent, this trend is only due to the increa
scattering rate on the repeller. When measured in nat
units on the repeller, the KS entropy has an especially sim
form

hKS~R!tcr5
hKS

0

n
2

3

2

D

n
~p/L !2 in two dimensions,

~82!
2-11
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hKS~R!tcr5
hKS

0

n
22

D

n
~p/L !2 in three dimensions.

~83!

We conclude with a number of points:
1. The principal problem with the escape-rate method

an analytical method for computing transport coefficien
apart from the inherent difficulties involved in calculatin
dynamical quantities, is that as yet we have no analyt
methods for calculating the KS entropy on the repeller,
dependently of the escape-rate formula. At the moment
can only use analytic techniques to calculate the diffus
coefficients and the Lyapunov exponents, leaving the KS
tropy as a quantity to be derived from them.

2. It would be valuable to have some results from co
puter simulations with which to compare the results obtain
here.

3. As mentioned earlier, the information and Hausdo
dimension of the fractal repellers in both two and three
mensions are very close to the full phase space dimens
three, for the Lorentz gas on the plane, and five, for
Lorentz gas in space, but are smaller than these value
terms of orderL22. This is a simple consequence of th
application of Kaplan–Yorke type formulas to fractal rep
lers @15#. For the information dimension we obtain

dI5322
g

l0
1

1O~1/L4! for d52, ~84!

dI5522
g

lmin
0

1O~1/L4! for d53, ~85!

where g is the escape rate andl0
1 , lmin

0 are the positive
Lyapunov exponent, and the smaller of the posit
Lyapunov exponents in the infinite system, respective
Gaspard and Baras have used these fractal dimension
express the diffusion coefficient in terms of the Hausdo
and information dimensions of the fractal repeller for the t
dimensional case@9,14#.

4. A problem for further study is to extend the calcul
tions given here to a system of many interacting partic
such as gases of hard disks or hard spheres. Some progr
this direction has been made, and it is now possible to
analytic results for the KS entropy and the largest Lyapun
exponents for dilute hard disk or hard sphere gases, in e
librium, in the thermodynamic limit@19–21#. It would be
very interesting to apply the escape-rate formalism to
transport coefficients, such as the shear and bulk viscos
and thermal conductivity, appropriate for fluid systems,
ing the method of Ref.@8#, and to determine the effects o
the fractal repeller on the dynamical quantities.

5. The thermodynamic formalism for hyperbolic chao
systems provides a very useful method for expressing m
of the chaotic properties of both open and closed system
terms of one quantity, the topological pressure@4#. The use
of kinetic theory to evaluate the topological pressure fo
dilute random Lorentz gas should certainly be possible,
has not yet been undertaken.
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6. In the next paper in this series we will consider the ca
of a Lorentz gas with a charged moving particle placed in
external electric field as well as in a random array of scat
ers. Then a Gaussian thermostat is applied which keeps
kinetic energy of the moving particle fixed. The syste
eventually reaches a nonequilibrium steady state. We
calculate dynamical properties of the moving particle in t
nonequilibrium steady state and compare with the result
computer simulations. A preliminary version of this wo
has already been published@22,23#.
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APPENDIX A: THE DISTRIBUTION OF TIMES OF FREE
FLIGHT

It is useful to have an expression for the mean collis
frequency or, equivalently, for the mean free time betwe
collisions for trajectories on the repeller. Here we argue t
such expressions can be obtained in a simple way from
Lorentz–Boltzmann equation, modified so as to include
new variablet which is the time since the last collision. Fo
the distribution of particles surviving in the system at timet,
with position rW, velocity vW , and with timet since the last
collision we propose the equation

]

]t
f F1vW •¹ f F1vẆ •

]

]vW
f F1

]

]t
f F52n f F ~A1!

with

f F~rW,vW 8,t50,t !5nad21vE dn̂Q~2n̂•vW !un̂• v̂u f B~rW,vW 8,t !.

~A2!

Equation~A1! can be derived in a way similar to the heuri
tic derivation of the usual Lorentz–Boltzmann equation, b
a few changes have to be made. Scattering and absorpti
the boundary are the only mechanisms which will reduce
number of particles with a certain time of free flight. Sca
tering will also act as a source of particles but always with
time of free flightt50. This effect is taken care of by th
initial condition Eq.~A2!. The dependence of the distributio
of times of free flight on both position and velocity is due
the non-uniformity in these variables off B resulting from the
absorbing boundary condition in combination with a high
survival rate for particles that collide more frequently~they
diffuse more slowly!. We note one important difference
which will become crucial, if the effect on external fields
considered. In the Boltzmann equation for the one part
phase space densityf B , which is based on the consideratio
2-12



as
m

.
r-

ng
tio

i

n

fo
di

e

o

he
In
ig
in

-

tr

c-

e
s,
y,
n

here
of

the
the
e
es
to

the

-
to
he

g

c
i-
en

ive

er-
gle

the

,
l

of

an-
in

u-

CHAOTIC PROPERTIES OF DILUTE . . . . II. . . . PHYSICAL REVIEW E63 016312
of the number of particles in a fixed volume element in ph
space, the streaming term is derived fro
(]/]q)(q̇ f B(q,t))50 with q5(rW,vW ). This is due to the con-
servation of particles in the absence of scattering events
the derivation off F we have to consider the number of pa
ticles with a certain time of free flightt after the last scat-
tering event and count how many of them are still there
time stepdt later. We therefore have to use a comovi
frame, which means that the streaming part of the equa
for f F has the formq̇(]/]q) f F(q,t). A term analogous to
f B(]q̇/]q) cannot appear in a comoving frame since
counts the difference of ingoing and outgoing particles in
fixedphase space volume element.

The solution of this equation can be obtained in two a
three dimensions as a gradient expansion@see Eq. 26!#. The
solution strategy is completely analogous to that used
solving the ELBE in two and three dimensions. For two
mensions we obtain

c̃0
F~t!5ne2nt,

c̃1
F~t!5~ 1

4 2nt!e2nt, ~A3!

c̃2
F~t!5

1

n S 2
1

2
nt1

1

4
~nt!2De2nt.

In three dimensions we obtain

c̃0
F~t!5ne2nt,

c̃1
F~t!52nte2nt, ~A4!

c̃2
F~t!5

1

3n S 2nt1
1

2
~nt!2De2nt.

As stated before above Eq.~57! the same results may b
obtained by integratingf̃ over the variablesz andg.

APPENDIX B: THE DISTRIBUTION OF
EIGENDIRECTIONS P„c…

In order to calculate the maximum Lyapunov exponent
a product of uncorrelated random 232 matrices
)Ui(t,f,a), we must take into account the fact that t
matricesUi do not in general commute with each other.
order to use standard theorems to calculate the largest e
value of a product of random matrices, we have to determ
the distributionP(c) of the anglec, generated by acting
with the random matrix U on the unit vector eW (c)
5(cosc,sinc) @18#. If this distribution is not isotropic inc,
the proper form ofP(c) must be determined from the solu
tion of an appropriate Frobenius-Perron equation.

In our case, the Frobenius–Perron equation for this dis
bution is given by

P~c!5E
0

2p

dc8P~c8!^d~c2c1~c8,f,a!!&. ~B1!
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The anglec1(c8,f,a) is implicitly defined by

U•eWc85uU•eWc8uS cosc1

sinc1
D , ~B2!

wheref, a are the scattering angles. The distribution fun
tion has to obey the normalization condition

E
0

2p

dcP~c!51. ~B3!

The average in Eq.~B1! ^ . . . & is in our case the averag
over the distribution of times of free flight, scattering angle
velocities and space multiplied with the survival probabilit
as defined in Eq.~24!. Since, contrary to the case of motio
in an external field@23#, the equation of motion forU is the
same for an open system as for an infinite system when t
is no external field, we can use here the expression
uU•eWcu derived in I. To evaluate the ensemble average in
Eq. ~B1!, we have to use the gradient expansions for
survival probability and the distribution of times of fre
flight Eqs. ~14!, ~12!. Since the ensemble average involv
an average over the velocities, the term proportional

vW •¹W n and all other nonscalar terms vanish. Therefore
deviation of P(c) from its isotropic value, (2p)21 can at
most be of order¹2n. Then, due to the normalization con
dition Eq.~B3! this deviation must also be be proportional
cos(mc), where m is a positive integer. Consequently t
only additional term of order¹2n in the expression for the
maximum Lyapunov exponent would come from multiplyin
the zeroth-order term~in the gradient of n) of ^ lnuU
•eW (c)u& ~which is independent ofc) with the term of order
¹2n in the expression forP(c). But this averages to zero
due to the factor cos(mc). Thus we may use an isotropi
distribution in the anglec when calculating the largest e
genvalue of the product of random matrices, and we th
obtain Eq.~72!.

We can understand this result also in a more intuit
way. This demonstration proceeds in four steps.

~1! An isotropic precollisional distribution ofc will give
rise after scattering to anisotropies of order2q̄2. To under-
stand this one should note that anglesc and c6p can be
identified. This merely amounts to an interchange of ref
ence and tangent trajectory. If the contributions of such an
pairs are averaged, the term linear invW •¹n cancels. The sole
source for the anisotropy in this case is the anisotropy of
survival probability as a function of velocity.

~2! A completely anisotropic precollisional distribution
of form d(c2c0) say, will give rise to a postcollisiona
distribution that is isotropic inc, up to corrections of order
2q̄2. This is a consequence of the isotropic distribution
the azimuthal scattering anglea resulting from the random
distribution of scatterers. Again, the anisotropy is due to
isotropy of the survival probability and the linear term

vW •¹n vanishes due to identification ofc andc6p.
~3! If we require that the anisotropic part of the distrib
2-13
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tion of c cancels on averaging, so does the isotropic par
the distribution just after a collision, that is, in an ensem
average in which we put together all contributions of e
semble members with a collision at an equal position a
time.

~4! Now since the precollisional anisotropic distributio
itself is of order q̄2 according to~1! ~and nothing will be
or
n.

cs
8

-

-

01631
f
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added to that just because of the result emerging here!, its
contribution to the postcollisional anisotropy has to be
order q̄4.

The postcollisional anisotropies resulting from the isot
pic part of the precollisional distribution are fully accounte
for by Eq. ~24! and so this expression gives correct resu
through orderq̄2.
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