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Chaotic properties of dilute two- and three-dimensional random Lorentz gases.
II. Open systems
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We calculate the spectrum of Lyapunov exponents for a point particle moving in a random array of fixed
hard disk or hard sphere scatterers, i.e., the disordered Lorentz gas, in a generic nonequilibrium situation. In a
large system which is finite in at least some directions, and with absorbing boundary conditions, the moving
particle escapes the system with probability one. However, there is a set of zero Lebesgue measure of initial
phase points for the moving particle, such that escape never occurs. Typically, this set of points forms a fractal
repeller, and the Lyapunov spectrum is calculated here for trajectories on this repeller. For this calculation, we
need the solution of the recently introduced extended Boltzmann equation for the nonequilibrium distribution
of the radius of curvature matrix and the solution of the standard Boltzmann equation. The escape-rate for-
malism then gives an explicit result for the Kolmogorov Sinai entropy on the repeller.
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. INTRODUCTION Sinai (KS) entropyhys(R). The sum in Eq(1) is only over
the positive Lyapunov exponents, and the Lyapunov expo-
In this paper we extend the analysis of the chaotic propnents and KS entropy are to be calculated with respect to an
erties of dilute, random Lorentz gases given in R&f.[de-  appropriate measure on the repel[&4]. Mathematically
noted by(l)] to include open systems with absorbing bound-rigorous proofs of the escape-rate formula, under a variety of
aries. The Lorentz gas consists of a point particle moving ircircumstances, have been given by several autf®+],
a system of identical hard diskd€2) or hard sphered  although the application of interest here, to large, random
=3) scatterers of radiua. In a dilute, random Lorentz gas, Lorentz gas systems with open boundaries, still needs a rig-
the average distance between the scatterers is large compaxg@dus proof.
to their radiusa, and the scatterers are placed at random on Equation(1) may be considered as the microscopic ex-
the plane or in space without overlapping each other. The@ression for the escape-rate of the particle from the open
interest in open systems, with absorbing boundaries, is occaegion, V. A macroscopic expression for the escape-rate is
sioned by the escape-rate method of Gaspard and N[@llis provided by the diffusion equation satisfied Byt) on large
which relates the coefficient of diffusion for the moving par- time and large space scales,
ticle in the Lorentz gas to the dynamical properties of par-
ticles on the set of trajectories that never escape from the
system. i(t)
The method of Gaspard and Nicolis is based on an iden- dt
tity in the theory of open, hyperbolic dynamical systems,
called the escape-rate formula. This formula is an expressiofjpere p js the macroscopic diffusion coefficient for the
for the rate of decay of the probability(t), of finding &  y5ying particle inv. The solution of this equation, for long

moving particle in an open regiol, surrounded by absorb- imes “and for absorbing boundary conditions is of the form
ing boundaries, at time If the motion of the moving particle

is hyperbolic, the time dependence Bft) is exponential,
decaying as exp{ ), where the escape-rate, is given by P() F{
=exX —

=DV?P(t), 2)

Dt|, 3

c
12

= 2 M(R)~hes(R). (1)

' wherelL is a length characterizing the distance to the absorb-
HereR denotes the set of initial phase points for the movinging boundary of interior points iV, and ¢ is a numerical
particle which are on trajectories that never escape from thé&actor determined by the shape & and the absorbing
system. This set of points is called a “repeller” in the phaseboundary conditions. Since the microscopic and the macro-
space, typically of measure zero with respect to the usuacopic expressions for the escape-rate describe the same es-
Lebesgue measure, with unstable and stable manifolds chatape process, they have to be identical, which leads to the
acterized by Lyapunov exponentg(R), and Kolmogorov—  Gaspard—Nicolis formula
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D=li - > h 4 aF+*VF+'-‘9F
=lm = = Ni(R) —hgs(R) |- (4) Tt Pop

Lo

:nad—lf dils-A|

(v‘n)f dp’ 5(p—p'(p))
Here the limitL—oo is taken to remove finite size correc-

tions, including the effects of microscopic boundary layers.
It is worth mentioning that the Green—Kubo microscopic ex-
pressions for the diffusion coefficierid, and Sinai’'s expres-
sion for the sum of positive Lyapunov exponents representThe notation is exactly the same as in I. The primed vari-
these quantities as infinite time integrals over appropriat@bles denote the restituting values, which lead to the
dynamical quantities. In order to apply E¢8)—(4), without  unprimed values after a collision, andienotes a unit vector
having to worry about subtleties due to the possible slowfrom the center of a scatterer to the point of impact of the
convergence of these integrdttue to long-time-tail effecjs moving particle at a collision. The solution of E) is

we assume that all of the dynamical quantitieshxs reach  normalized according to

their long-time asymptotic values on a time scale which is

short compared to the hydrodynamic time scale on which the Lo, > -

diffusion (Equation appli)és(.Thié assumption is certainly a f dp'F(r.v.p".t)=fg(r,0.1), )
reasonable one for the low density cases we consider)here.

The escape-rate formula for diffusion, B¢), and the gen- wherefg is the solution of the standard Lorentz-Boltzmann
eralizations to other transport coefficiefid, show a strik-  equation[16]. In this paper we will assume, as in I, that the
ing connection between the macroscopic quantities that corelements of the inverse of the restituting matfim,] 2, are

trol hydrodynamic processes, the transport coefficients, angpically small compared to the inverse of the scatterer ra-
the microscopic quantities that describe the chaotic dynamicgius a 1. As a result, we may simplify the delta function
taking place on the repeller. A detailed discussion of this camppearing in the collision integral on the right-hand side of
be found elsewherf9,10|. Eq. (5).

The purpose of this paper is to provide an analytical cal- The plan of the paper is as follows: In Sec. Il we discuss
culation of the positive Lyapunov exponents on the repellerthe problem of calculating averages on the repeller in phase
\i(R), for the random, dilute Lorentz gas, and to use thesespace. There we argue that it is necessary to introduce a
together with known values for the diffusion coefficieBt,  survival probability for a particle that is inside the system at
to determinehys(R), the KS entropy of the trajectories on timet, to be still inside the system at time-T. We argue
the repeller. We take the same approach as in | where what this probability is needed to guarantee that the properties
used kinetic theory arguments to calculate the Lyapunowve calculate are actually those of the repeller and not merely
spectra of two and three dimensional random, dilute Lorentzome asymptotic properties of a set of particles that eventu-
gases in equilibrium. Here we are concerned with a nonequially escape from the regioh. (Not taking this survival prob-
librium situation where particles escape from the system. Webility into account led to an erroneous result in a previous
will see that spatial inhomogeneities introduced by the abpublication on this subject, subsequently corrected in an er-
sorbing boundaries will require some significant modifica-ratum[11].) We will set up the formalism that will allow us
tions to our previous calculations. There we used mean-frego calculate the Lyapunov spectrum on the repeller in Sec.
path arguments and some results from the theory of productd. In Sec. IV, we will treat the two dimensional case, and in
of random matrices to determine low density values for theSec. V, the three dimensional case. We conclude in Sec. VI
individual Lyapunov exponents and we used an extendedith a summary of our results, a number of remarks, and a
Lorentz—Boltzmann equation as an efficient method for dediscussion of some interesting open questions.
termining the sum of the positive Lyapunov exponents. Here
we will do the same for the Lyapunov exponents on the
repeller. We mention that before we developed this method
[11] analytical results for Lyapunov exponents on repellers To treat the open system correctly it is necessary to de-
had only been obtained for simple one dimensional modelselop a tool which guarantees that the quantities we calculate
[12,13. Otherwise one had to use numerical methdds. are the actual Lyapunov exponents for trajectories on the

It will be helpful to recall some ideas from I. There we repeller. In general, the measure on a repeller is a very sin-
obtained the individual Lyapunov exponents as well as theigular object. For large systems we expect that this measure
sums in terms of various averages over functions of a radiugill be very similar for all typical configurations of scatter-
of curvature(ROC) matrix p, using an appropriate distribu- ers, when observed on length scales small compared to typi-
tion function. A central notion introduced in | is the use of ancal macroscopic length scalésystem sizebut large com-
extended Lorentz—Boltzmann equati@LBE) to determine pared to the mean free path between collisions. Therefore
the distribution of the elements of the radius of curvatureaverages on the repeller may be replaced by averages over
matrices needed for our calculations. The ELBE was derive@dmooth reduced distribution functions for the light particle
heuristically in I. In the absence of external fields acting onalone obtained by averaging over all configurations of scat-
the moving particle it is given by terers. Further support of this picture is provided by the ob-

><F(F,J’,p',t)—@(—zj-ﬁ)F(F,J,p,t)}. (5)

Il. AVERAGING ON THE REPELLER
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servation that for large systems the fractal dimension is closgarticle at pointr with velocity —ov at time t, that was at
to the embedding dimension, as follows from Young's for-
mula[13] relating the Lyapunov exponents to the informa-
tion dimension of the repeller.

For dilute Lorentz gases without escape, the probability
density of the ROC matrix elements is obtained as the time
independent solution of the generalized Lorentz—Boltzmann
equation forF(p) given by Eq.(5). For a system with es- . o . - -
cape, the solution of the time dependent Lorentz—Boltzmann The integration in Eq(7) with respect ta”’ andv ' allows
equation only determines the probability of finding a particleus to replace S(r,v,t|t+T) by the solution, f«(r,
at pointr with velocity v with a ROC matrixp at time t. It ~ —v, T)N8(v—vy), of the Lorentz—Boltzmann equation with
does not contain any information about the future behaviohomogeneous initial conditith(F,—J,O)zl. HereNis a
of this particle. More specifically it does not exclude the normalization constant given byN:(Zﬂvo)_l and
possibility of this particle leaving the.system at a later time(4m}g)fl in two and three dimensions, respectively. That is,
t+7. To obtain the smoothed densign the repellerwe e need the long time solution of the Lorentz—Boltzmann
therefore have to weight this Lorentz—Boltzmann dens'tyequation, with absorbing boundary conditions, and with an
with the survival probability. This is the conditional prob- jtial condition which is uniform in space and in velocity
ability S(r,v,t|t+T), that a particle at point with velocity  directions. Such a solution will not stay uniform due to the
v at time t will still be in the system at the tinte-T. It does ~ escape of particles through the absorbing boundaries.
not depend orp because all trajectories in a bundle are in- Therefore Eq(9) is equivalent to
finitesimally close to each other. The introduction of the sur-
vival probability in order to obtain a proper description of (9(p))rep
the repeller is very reminiscent of, and essentially identical

pointr’ with velocity —v’ at timet—T. Thus,

S(routlr o/ t+T)=S(r",—v' t—T|r,—0v,1)

=S(r’,—v",0r,—v,T). (10

to, methods used to compute fractal dimensions and other . L L
properties of attractors and repellers in more traditional dy- j dpdrdvF(r,v,p,t)fs(r,—v,T)g(p)
namical systems calculation$3,15. =lim lim

The survival probability that we nee8(r,v,t|t+T), can, toe T f dpdrdoF(r,0,p.t)fs(r,—0v,T)

in d dimensions, be written as an integral over the condi-

. . - s (11
tional probabilityS(r,v,t|r’,v’,t+T) as

Equation(11) reduces the calculation of the sum of the
S(F,J,t|t+T)=j dd;,ddl;,s(;’l;,up,5,,t+T), @ Lyapunov exponents and the maxi_mum Lyapunov exponent
on the repeller to standard integrations, when the solution of
the Lorentz—Boltzmann equation fﬁg(F, —J,T) and that of
the ELBE forF are obtained. In the following sections we
s, o s s v will solve these equations for large systems with absorbing
S(routr' v, t)=8(r—r")s(v—v"). (8 boundary conditions. For long times, the solution of the
ELBE for F will be obtained as a generalized Chapman—

The average of a functiog(p) on the repeller is then Enskog[16] expansion of the form
given by

with initial condition

F(r,0,p,0) =N8(v—00)($o(p)Nm(F, 1)+ ¢y (p)v - V(T 1)

<g(P)>Rep
+ PPV ing(r)+ ). (12)
dpdrdoF(r,v,p,)S(rv, tt+T N
T j P (rv.p O | )9(p) Also n,(r,t) is the slowest decaying eigenmode of the
=lim lim . e 7 . . .
o Toooo P > > diffusion equatiorwith the given absorbing boundary condi-
dpdrdvF(r,v,p,t)S(r,v,t|t+T) tions

©)

The limit T—o has to be taken first, to guarantee that
only the trajectories which never leave the system aren second order in the gradient we have kept only the scalar
counted. The limits of numerator and denominator vanistpart vV2n,,. A possible contribution of ordeV? to the
separately, since the repeller is a set of Lebesgue measurgapunov exponents from a term in Ed.2) proportional to
zero. The conditional probabilitg(r,v,t|r’,v’,t+T) is the  the traceless tensarv—(v?/d)1 vanishes after integration
solution of the ordinary Lorentz—Boltzmann equation forwith respect to the velocity and is therefore neglected in this
open Systemss(F’ ,l;,,t'i‘T) with the initial condition speci- equation. The solution of the usual Lorentz—Boltzmann
fied in Eq.(8). Due to time reversibility and time translation equation forfS(F, —J,T) can also be written as a Chapman-—
invariance, this probability is the same as that for finding aEnskog expansion

Nm(dV)=0. (13
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to(F, =0, T)=N&(v —vo) (N, T) J dp’ n(p')=0. (17)

—Cgv-VNnp(r,T)+---). (14)

The constants in Eq14) arec,= —3/(4v) andc;=—1/v in It is important to note that in Eq12) and (14), the

two and three dimensions respectively, wheris the mean - - .

collision frequency. Due to the normalization condition, Eq.&i9enmodesin(r,t) andny(r,T) have the functional forms

(6), the functionsy; in Eq. (12) have to fulfill the conditions No(r)exd —tw] and ny(r)exd —Tw], respectively, whereo
denotes the eigenvalue of the slowest decaying mode of the

f dp’ vo(p') =1, (15) diffusion equation, andwO(F) is the corresponding eigen-
function.
Using Egs.(12—-17% we can write Eq(11) as
| oo, 16
N Cyq N
[ o ot gontir—8| L+ 2 Tt oo
<g(P)>Rep: v2c2 +eee (18)
fddr(néﬁ)—"T“(Vno(F))Z)

We note that exponentially decaying factors have canceled ihoundary condition. Finally the escape rate near the bound-

the numerator and denominator of E@d). ary is of similar order, as it is proportional to the local den-
Since we only kept terms up to the ordéf when deriv-  sity. As a result the effects of the boundary layer are of order

ing Eq.(18), we also have to expand the denominator in Eq.(\/L)3, whereas here we will be interested in terms of order

(18). The final result for averaging a quantip) on the  (\/L)? only.

repeller, up to and including terms of ordeFf, is given by

¥

Cq

Ill. LYAPUNOV EXPONENTS

c
Yot o

véqz} 9(p) The strategy presented so far is applicable to the calcula-

tion of all quantities which can be written as ensemble aver-

, (19 ages of functions of the ROC matrix. In our case this always
happens, if a quantity is given as a time average over a
function of p(t). The sum of the positive Lyapunov expo-

) nents fulfills this property as shown by Sifdi7]. We as-
f d9r (Vng(r))? sumethat trajectories on the repeller for the Lorentz gas are
e — (20) sufficiently ergodic, so that we can write the sum of the
J ddrnS(F) exponents as an average over the appropriate ensemble of
ROC matriceqsee also)t

-+,

2
—d
d

<g(P)>Rep:f dp
4.

with
52:

The quantitya may be interpreted as a wave vector. If, for
example, a system is considered with absorbing boundaries > N(R)=v(Tracép ))rep- (21)
at x==*L/2, but of infinite extent in other directions, Eq. 1i=0

_— min_ :
(20) can be evaluated to show thgeq,™=(wll) is the In two dimensions this is trivially also the largest exponent.

smal!est possible wave vector in ttxedlre_:ctlon. We W!" . The maximum Lyapunov exponent in 3 dimensions is not
consistently neglect effects due to microscopic, kinetic

boundary | 2V si h eff ) calculated as a time average, but as an average over a func-
boundary layers neatV, since such effects are unimportant yjo, of time of free flight and collision parameters. The sepa-
in the escape-rate formalism as the size of the system b

fation of trajectories at a given time can then be written as
comes large.

A . . product of matrices, each describing the propagation of the
That this is the case can be understood in the followin 9 propag

OC between two collisions, as explained iflL]. Using an
way: The fraction of the volume taken up by the bou”daryidentical metho:iv we ﬁln('j xpial il ng

layers is of ordem/L with A the mean free path and a

length of the order of the diameter of the system. The density N

in the boundary layer is equally of ordar/L compared to 5r1(t)=1_[ Ui(7 &y ;) 5F-(0)
the average density in the system, as a result of the absorbing ES TR ’
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with hand side of Eq(23) as an average over the distribution of
. the matricedJ;. To do this we have first to derive the dis-
Ui(7, b ,ai)=TeX[{ J '+1vp—1(t/,¢i La)dt’ | tributionﬁoﬁf particles, which collided a time of free flight
{i ago,fg(r,v,r,t), for an open system. This is done in Appen-
(22 dix A. Then we have to make sure that the average is re-
Here ¢; and a; are the scattering angles at thé collision stricted to thg repeller. This can be a_qhieved as described in
andr =t;,,—t; is the time of free flight between thiéh and ~ Sec. Il by using the survival probability. We argue as fol-
(i+1)th collision. It is important to notice that ER2) can- lows: To determine the appropriate average ofUn(é|),
not be written in terms of a time integral over a local func- one needs the distribution of particles that have collided at a
tion of p(t), since theU; matrices typically do not commute pointr, with the scattering angles, «, that have the velocity

with each other. v after collision, and that travel freely for a timeuntil the
Since for dilute Lorentz gases correlations between colli- ' y

sion events are not important in the limit of low densities, weneXt collision. Fgrther, to mclude_ only trajec_tf)ruiséon the
can make the approximation that the matrithsare inde- ~ fepeller, we again need the survival probabilig(r,v,t|t
pendent, randomly, and to the order in gradients that we use T), for a particle withr,v at timet to remain in the system
here, isotropically distributed matrices, each with indepenat least until timet+T. We can express the distribution of
dent freg fllghfc t|r_nes_ and collision _parameters selected fro”ﬂ)articles colliding at poinf and having velocity? after col-
appropriate distributions, to be discussed beld8]. We ision in terms of the distribution of particles arriving to col-
will postpone a discussion of the isotropy of thematrices e . T

lide at pointr with the restitutingvelocity v’, since the rate

until Sec. V and Appendix B, where we will calculate the ) . X -
largest Lyapunov exponent for three dimensional systems?t which particles arrive at a scatterer before collision should

The maximum Lyapunov exponent is then given by be gqual to the rate at which they leave the scattergr a]_‘ter
collision. The former rate can be calculated from kinetic

theory without difficulty due to the assumption of molecular

) 1 XN - chaos, while the latter rate requires that correlations between
A R)= lim 2 In(|U;-€l), (23)  particles and scatterers, produced by a collision, be taken
N— o = ) > A > ~ > A
> into account. Note also that-n|=|v’-n|, and thatv-n
=1

=0, whilev’-n<0. We finally arrive at the following gen-

whereé is an arbitrary unit vector normal to the velocity ~ '@l €xpression for the maximum Lyapunov exponent of the

As in the case of infinite systems, we now write the right-OP€n system,

drdndrdo|n-v|O(n-v)fe(r,v’, 7,t)fs(r,—v,T)In|U-€|
Ama)&R):Vcr“n'U'eDcr:Iim Ver . L R - . (24)
== fdendrdv|n-v|®(n-v)f,:(r,v’,r,t)fs(r,—v,T)

Here(), is used to distinguish the present average of variables that are calculated only at the instants of collisions from the
preceding ones. Further the integrands in both numerator and denominator take into account the effects of particles whose

velocities are changed fron to v at timet, before which a free flight time of takes place. Thusg(r,v’, 7,t) is the density

of particles with velocityﬁ’, before collision, at the poinj[ and timet, which had a time of free flight time of lengthbefore
the collision, andv,, is the average collision frequency for trajectories on the repeller. Here

v'=v—2(v-n)n (25)

andn is the unit vector pointing from the center of the sphernedisk) to the point of impact. The fact¢ﬁ~5| appears in the
integrals when one takes into account the rate at which collisions take place between the moving particle and the scatterers.
Equation(24) should be compared with E¢R). The mathematical meanings of these averages are, of course, different. In Eq.

(9) the function to be averaged depends on the random matind the phase space variableandv . In Eq.(24), the average

depends on the random variables time of free flightollision vectom and phase space variableandy. But in both cases
the average is restricted to the repeller.
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The distribution of times of free fIighf(F,J,r,t), and therefore the average on the repeller, can be expressed as an
expansion in gradients of the density:

fe(r,v,7,0)=8(v —vo) (Yh(DINW(F, O+ L (D)0 - V(1 1)+ ¢5(1)v2V2n.(1 ). (26)

The functionswiF are calculated in Appendix A for two and three dimensions. By substituting (E6sand (14) for f and
fs, respectively, one finds that through second order in the gradienf2Bgassumes the form

f deﬁ|ﬁ-5|(ﬁ-J)( ¢5—(%¢§(1—2(ﬁ-{;)2)+ o 5203)|n|u-é|

fda|a.,;|(a.a>(1-%<1—z<ﬁ-a)2>q_zvé

Amad R) = ver

Here a number of simplifications have already been madeELBE, Eq. (5) has the forn{11,1]
All terms that are odd in the velocity have been left out since

they yield zero on integration. Second order terms in the oF . JF J

. . . . . —+v-—=+tv—F+vF
denominator that give zero on integration over the velocity ot or dp
due to the normalization of the Chapman—Enskog solution
have been left out likewise. Furthermore terms of the form _ Zf”’z d¢cos¢5( B Ecos¢)f P
v0:VnVnf(v) have been replaced by €)Vn|?f(v), 2) a2 Pm2 BT
which gives the same result on integrating over velocity. 29

Finally the factor 1-2v-n results from integrating’ - Vn '

=(0=2(- 7))V over . The components o normal  £EI8 & WOYE B BRORCEL LB R R amoth, and the
to v give vanishing contributions. By defining the constant je\, fynction appearing in E6) has been simplified to that
A= [dn|nv|(1-2(n-v)?)/fdn[n-v|@(n-v), which van-  appearing in Eq(29). The solution of the ELBE is normal-
ishes ind=3 and equals-1/3 ind=2, and expanding Eq. ;e according to Eq(6). With v’ we denote the velocity of
(27) up to orderg®, we obtain the final result a particle immediately before the collision, which results in a

veIocityJ after the scattering evel25). For the solution of
Eq. (29 we impose the boundary condition tHatvanishes

Amad R) = Vch drdnin-v[O(n-v) both at zero and at infinite values pf i.e.,

F_| ,F _C_g F > > o > > _
XY o —| d2(1) = T AYo(7) F(r,v,p=04)=lim F(r,v,p,t)=0. (30)

p—®

We impose the boundary condition @0, because the ra-
dius of curvature increases during free motion of the particle,
collisions never reduce its value to zero, and all trajectories

+%wi<1—2<ﬁ'8>2>)?v%]

|”|U'é| with an initial negative value for the radius of curvature will
. (28 . o . . "
A acquire positive radius of curvature with probability one. The
f dnn-v|®(n-v) negative sign of the radius of curvature is conserved only on

the stable manifold, which has Lebesgue measure zero in the
phase space.
The integration overp can now be performed and we

There is only one positive Lyapunov exponent in two di- obtain from Eq.(29)
mensions. Therefore the positive Lyapunov exponent can ei-
ther be calculated with the help of EQ1), i.e., formally as IF IF g
the sum of the positive Lyapunov exponents or as the maxi- — 40 —+v—F+uF
mum Lyapunov exponent with the help of E§4). We will at ar ap
use both methods, to demonstrate that the two approaches
lead to the same result. For the two-dimensional Lorentz gas, _ Z®(1_ 9 > =
) . = o) (fg(r,v’,t)
the radius of curvature matrix reduces to a scatgrthe a (1—g?)1?
radius of curvature of two nearby trajectoriesee[11] and

), and the ELBE has as variableg, andp. In this case, the +fg(r,v” 1)) (31

IV. LYAPUNOV EXPONENT IN TWO DIMENSIONS
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whereo=2p/a<1. The velocities, result from the evalu-
ation of the delta function at precollisional velocities which

satisfy the relation - n=ov. We may use the expansion Eq.
(14) for the Lorentz—Boltzmann densitf,/B(F,J,t), by re-
placing —v in Eq. (14) by v. Then we use the relation
n(—¢)=—n($)+2cospv to obtain, from Eq.(31), an
equation for the distribution function ?(F,J,a,t)
=aF(r,v,p,t)/2 given by

+ 0F+20 &T:+ F
at Vg aae
. g

—1/@(1—0')(1_0_2)1/2

- 3 R R
X\ Ny(r,t)— 4—V(1—202)U-Vnm(r,t) .

(32

Using the Chapman—Enskdinsatz Eq. (12), for F, we
obtain equations for),, ¢, and ¢, by comparing equal or-
ders of the gradients of the density, on both sides of Eq.
(32). The zeroth-order equation {g11] and )

20 0 et =0 (1 33
A 95 Yot vibe=1vO( U)(l——az)llz' (33
with solution
a
_Ve—vaa/(2v), for o>1
2v
Yolo)=

, (34)
Z[1—(1—(72)1’2], for o<1.

This solution is continuous at=1 and fulfills the normal-
ization condition Eq(15) up to corrections of relative order

n=na2

By equating the terms to first order in the gradient in the

density in Eq.(32), we obtain an equation fag,, given by

o(1-20?)

(1—g?)2°
(35

2v d 3
Po(o)+ a %lﬁl'* vif=— Z@(l—o)

Here we used the fact that the time derivatire,/dt is of

PHYSICAL REVIEW E63 016312

—voalv) - for g>1

a
e
v

i(o)= .
Q[l—(1—02)1’2(1+202)], for o<1.
(36)
By comparing the terms in ordér?n,, in Eq. (32), we
obtain the equation fog, given by

D 1 2v d B
;',UO(U')‘F El//1(0)+ V'ﬁz(o')*'gﬁl//z((f)—o-
(37)

Here we used the diffusion equation for the density

1% - -
Enm(rlt):DVan(r!t)l (38)

and the Chapman-Enskog solvability condition, E&j7).
The low density value of the diffusion coefficiebtin two
dimensions i =3v?/(8v). For our purposes it is sufficient
to write the solution of Eq(37) in the form

vao'

o D 1
Uo(o)= —e_”a"/zvfo da’eT(;lﬂo(U')"’Elﬂl(U’)) :
(39

Once we knowyy,, /1, and, we can obtain averages on
the repeller using Eq19). The positive Lyapunov exponent
is [see Eq.(21)]

n _21}0 1
NMR)=— 5 (40)
Rep
1 4y |1
<E>R;J Ao Yo @(%*T)‘%)l’ng);-
(41)

Using Egs.(34), (36), (39) we can now calculate the re-
sult in the lowest order in the density by standard integra-
tions, and we obtain, to second order in the gradients,

Ay 1| —
_C 2
» )Dq.

ANF(R)=\g + 5

(42

Here)\g is the equilibrium solution for the Lyapunov expo-
nent of an infinite systemi[11], I) given by
\g =2nav[—In(2na®)+1-C], (43

whereC is Euler’s constant.

second order in the gradient—uvia the diffusion equation. The We can also use the method for the calculation of the
solution of Eq.(35) satisfies the normalization condition Eq. largest Lyapunov exponent to obtain the resultXdr as an
(16) with c,= —3/(4v). This can easily be seen by integrat- average over the distribution of time of free flight on the

ing both sides of Eq(35) with respect tar. The solution of
Eq. (35) has to be continuous at=1 and it is given by

repeller. The rank of the matrii, defined in Eq.(22) is
unity in two dimensions, i.eyJ is a scalar given by

016312-7
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2vT ) JE . GF PR
U=|1+ . (44) 4y — —  + ——|F+.F
acosd pn +v &F+U<0P1+(7P2 F+vF
p (72 27

The leading contribution in the low density approximation is = ;f do da sin¢ cose|cos 2|
obtained by keeping only the term proportional#dn Eq. 0 0
(44). The maximum Lyapunov exponent is then in leading a
order X8| pr1— Ecos¢> S| po— m

1 % X 8(p1p+ (acose tarfe sin 2a)/4) fg(r,v',t).

AN(R)= <In(—7>—lncos > 45
( ) <T>cr d) o ( ) (48)

: o The factor|cos 2 results from the transformation from the
. By using Eqs.(2§), (28), _and(AS) for the dlstrlbgtlon of variablespq1,p22,p12 10 p1,p2,p12 in the 5-functions in the
times of free flight in two dimensions, we can easily recover X ~
the result, Eq(42). right-hand side of Eq.(46), and we setF(pi,p2,p12)

=F(p11,p22:p12)- Please note, tha is not yet normalized

with respect top,,p,,p12. The veIocityJ’ before the colli-
V. LYAPUNOV EXPONENTS IN THREE DIMENSIONS sion depends on the collision anglasand ¢, through the

The ELBE for the three-dimensional Lorentz gas can berGI"Jltlon

solved by choosing an appropriate parameterization of the
(ROO) matrix p. Starting from Eq.(5) we can simplify the
delta function appearing in the restituting part of the collision
operator(see ), so as to obtain

with
oF . oF o ) ) ) )
E“"? v Ip11 Pz N=cos¢ v +sing cosav, ;+singsinav, ,, (49
y (72 2 ) A R
=—vF+ ;fo d¢f0 da sin¢ cos¢ and the unit vectors,v, ;,v, , form an ortho-normal set.

Now, using Eq.(47), we can perform they integration,

and we keep only the non-vanishing terms in théntegra-

X H o(pij—pij(¢,a)) tion. After integrating overr and makingf g explicit, we find
= that we can rewrite Eq48) as

xf dpilf dpizf dphF(r,u’,p',t). (46)

I\~
—+ —|F+oF

oF . oF ( d
. U
dp1  9p2

Here the averagénfinite system and low densitycolli-
sion frequencyy, is v=na’v 7. The ROC matrix is sym- _ 8vN (2

= d¢ sing cot ¢
0

metric, therefore only three parameters are necessary to de- Y
4p1s acos¢
o\ p1— 2

scribe its behavior. As shown in | it is convenient to use the
eigenvaluesq,p, and the off diagonal element;, as pa-
rameters. Together with the normalization condition E&j. X001

and the solution of the Lorentz—Boltzmann equation as a acos¢tare
gradient expansion, given by E@.4), with -v replaced by R 1
v, andcy=—1/v, xo P2~ 3 cosh S(v=vo)| N(r,t) = —

X(1-2cofh)v-Vny(r,t)+---|. (50)

- s - 1. -
fa(r,v, ) =No(v —vo)| N(r,) = —v-VNp(r,H)+- - |,
47 Here we have explicitly indicated only the terms needed for
our further calculations. It is now convenient to introduce the
with A/ defined below Eq(8). We find that Eq(46) can be definitions %;/a=o; and 20,,/a=04,, and to perform the
written as ¢ integration. We find that
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al~=+9(9l~:+2/ a+ i F+uF
E U.? Uar‘_l r"z v
32v N 20,0 a?
=0l 1- =] |0(l-0)—
Ta 1-07 1-07
X 8 ! S Fpy—
T2 o (v—vo)| Nm(r,t) >

. (51

X(1=202)v-Vng(r,t)+- - -

PHYSICAL REVIEW E63 016312

where fg is the solution of the standard nonequilibrium
Lorentz—Boltzmann equation.

The physical meanings & z, andy become a bit more
transparent if we consider E¢52) and Eq.(53) in more
detail. We begin by noting, that the distribution function,

F(F,J,pl,pz,plz,t), for the two eigenvalues and the off di-

agonal element of the ROC matrix is established through the
dynamic process involving intervals of free flight separated
by collisions of the moving particles with the scatterers. The
time dependence of the ROC matrix can be completely ex-
pressed in terms of scattering angles and time of free flight.
In (I) it was shown that the eigenvalues of the ROC matrix
increase linearly in time during a free flight and the off di-

We point out thatF is not normalized with respect to agonal element stays constant. The reparametrization Eq.
01,05, ando,, since we have not yet introduced the appro-(52) exactly reflects this behavior. We can see that the di-
priate Jacobian. Equatiof®1) can be further simplified by mensionless parameter s corresponds to the time of flight,

introducing a new set of variables €&,0<z<1,— w/2<vy
<m/2), defined by the relations

0'1:Z+S,

1
g,=—t5,
27z

1-72
2z

T1,=Sin(y) (52

The normalized distribution function 7(F,J,s,z,y,t)
=J(s,2,9)F(r,v,p1,p2,p12:t) Obeys the equation

il +9f+ 2v a?+ f
o a os
2vN

—20(1-2)0(2)0 (/2= )0 (y+ml2)
.1

X 8(s—0")8(v —vo)( ny(r,t)— >

><(1—222)79nm(F,t)), (53

whered=v-V, andJ(s,z,y) is the Jacobian given by

(9(0'110'2=0'12)‘
a(s,z,y) |
(54)

I(p11,p22,p12)|| ¥(p1,p2,P12) |
I(p1.p2.p12) ||9(01,02,01)|

J(z,8,7)=

_a_3 (1+2%)(1-2%)

-3 > (55)

We point out that this Jacobian is independens.at guar-
antees the proper normalization bhs

o0 1 w2 — N
jdsf dzf dyf(r,v,s,z,y,t)=1fg(r,v,t), (56
0 0 — /2

which is also clear since thé - function in s in the right-
hand side of Eq(53) shows that the gain term is a source of
particles with a free flight time of zero. From E&2) we can
then conclude that, respectively 17, correspond to the pos-
sible values of normalized eigenvalues, o, at the colli-
sion. Equation(48) shows thatz is physically the cosine of
the scattering angle. With the same arguments, it can be
seen that up to a factor of 2y finds its physical correspon-
dence in the azimuthal scattering angle

As one might suspect here, the solution of ExB) can be
interpreted as a joint distribution function for time of free
flight and collision parameter. This may seem surprising at
first, because the latter are statistically independent quanti-

ties. Correlations irf however, are the result of considering
this function at fixed time and position. In a comoving frame,
i.e., cconsidering®(r—(a/2)ov,v,s,2,7,t—ac/2v), one
would find the variables, z, and v to be uncorrelated in-
deed.

The distribution of times of free flight in 3 dimensions Eq.
(A1) can be recovered, if we integrate E§3) overz andy
and identifyas/(2v) with 7:

.. 2v 5
o r,v,;r,z,y . (57

. a w2 1
fe(ryv,n)==— dyf dzf
— /2 0

For large systems, we can solve H§3), as in the 2
dimensional case, by using a gradient expansion

F=6(v—vo)NO (72— y)O(y+ 77/2)( N(T 1) Pr0(S,2)

2

a- L~ a‘_, . o~
+ Zﬁnm(f,t)%(S,ZHZV Ny(r,t)go(s,z)+ - - -

(58)

The solution of Eq(53) has to satisfy the relatio(b66) The

quantity go(s,z) was already obtained in I. It satisfies the
equation

d. - 2v .
G0t vio=—0(1-2)0(2)28(s-0"), (59
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where the dimensionless collision frequencyis (a/2v)v.
The solution of Eq(59) is

To(s,2)= 2—;@(1—z)®(z)z®(3)e‘;s. (60)

The equation forj, is obtained by keeping only the terms

proportional todny,

- do s 2
Yo+ gt vih=—0(1-2)0(2)2(1-22}) 5(s—0").

(61)
This equation is easily solved to give
~ -2v 1
P(s,2)=——| sz+=z(1— 222)>
w v
X0(1-2)0(2)0(s)e "=, (62)

Considering the terms of ord&?2n,(r,t) and keeping only
the scalar part ofid, we obtain the equation faf,

. 1. d. -
D i+ §‘/’1+ d_slr/fz+ vip,=0. (63

Here the Chapman—Enskog solvability condition E#j7)
and the diffusion equation fam,,, Eq. (38) were used. We
also introduced the dimensionless diffusion coefficiént
=(2/av)D. The solution of this equation is given by

o D +12+1 1-27°
z//z(s,z)—? sz gsz 552( z°)

XO(1-2)0(2)0(s)e” . (64)

PHYSICAL REVIEW B3 016312

with z=cos¢, as derived in I. The angles specifies the

direction of the unit vectoéd, in the plane perpendicular to
the trajectory. In general an additional average over its sta-
tionary distributionP(¢) is necessary. However, it can eas-
ily be shown that the corrections to an isotropic distribution
of directionsP () are at most of order cagv?n(r,t) and do
not contribute to the average in E@6) in order V2n(r,t)
(see Appendix B

Now, using Egs(65), (19), we are led to the determina-
tion of the sum of the positive Lyapunov exponents, and we
obtain, to second order in the gradients,

Mad R)+ M iin( R) = hgs—D?(1+2(In(R/2) +0)),
(68)

with n=nma®=2v. Here,hl is the KS-entropy for an in-
finite system[I] at equilibrium given by(69), C is Euler’s
constant, andj is defined by(20), and
hds=2na?v 7 —In(n/2)—C]+ - - -. (69
with the dots indicating higher density corrections.
This expression for the sum of the Lyapunov exponents
can also be calculated by averaging IndietTrace IrJ over

the distribution of times of free flight and the scattering
angles Q) with the help of Eq.(28), and by replacing

In|U- €| with TraceIrJ. In leading order for large times of

free flight, i.e., small density of scatterers, we obtain
)‘r;axR)_F)\r;in(R):Vcr<Trace|r(Upll7')>cr- (70

The matrix p, is the ROC immediately after a scattering

event. It depends in leading order in the density only on the

scattering angles and« and is defined in paper |. Here it is

only important to notice that it has eigenvalugs

= (al2)cos¢ andp,=al(2 cos¢). The trace of the logarithm

in Eq. (70) leads therefore to a cancellation of the terms

The formulas for the sum of the Lyapunov exponents andjependmg on Incog, so that we only have to evaluate

the maximum Lyapunov exponent in equilibrium were ob-
tained in 1. The same formulas are valid in the nonequilib-
rium case, if the averages are replaced by averages on the

repeller. For the sum of the Lyapunov exponents Ed)
gives

a > 3 ( 1 1 )
Zx.>o)\i(R)_ Z+s | z+s Rep’ (65

while Eq. (28) leads to
7\ma>g('R)=Vcr<|n|U(COS¢,a,T)~é¢|>cr, (66)

with the average collision frequency on the repeliey
=1/ )., and

2ur\/1+z4+(1—z4)cosz(¢— )

|U(Z,C¥,T)'e¢|=T 222

(67)

2v
A$a>£R)+)\rT1in(R):2Vcr<In<;7)> (71)

cr

This strategy also leads to the result E6g).

With the help of Eqs(66), (67), (24) and Appendix A the
maximum Lyapunov exponent is given, to second order in
the gradients, by

+ 0 ) ~ 1
Nmad R)=Nmaxt D0 —In(n/2)—C+Z—In2 , (72

where 10, is the equilibrium value of the maximum

Lyapunov exponent for an infinite system
A =na%va[—In(n2)+In2—%-Cl]+---. (73
The expression for the smallest positive Lyapunov expo-

nent can be obtained, to second order, from E8) and
(72), as
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see that trajectories on the repeller are constrained to have
’ (74) h_igher collision frequency than those for the infinite, equilib-
rium system.

The Lyapunov exponents, i.e., the rates of separation of
trajectories, are larger on the repeller than in the infinite sys-
tem. One might have expected, that due to the restriction of

)\,Omn= nav [ — In(n/2)—In2+ $—Cl+---. (75 the available phase space volume for a particle on the repel-
ler, the rate of separation might have been smaller on the
repeller, but the increased scattering rate counteracts this ef-

V1. DISCUSSION fect. However, if we compensate for this effect by expressing

We have now calculated, analytically, the spectrum Ofthe Lyapunov exponents in units of the mean free time on the

positive Lyapunov exponents on the repeller for the openfepeller, the terms proportional ¢ lead to a decrease of the
dilute, random Lorentz gas in two and three dimensionsLyapunov exponents because on average/#)(decreases.
Then using the escape-rate formula we may infer the valuedsing Eqs.(42) and(76) for two dimensions and Eqs68),

of the KS entropies on the repeller as well. We find that the(72), (74), and(76) for three dimensions, the Lyapunov ex-
corrections to the equilibrium values of the Lyapunov expo-Ponents in natural units on the repeller are given by
nents and KS entropies are of ordet.2Mwherel is some +

characteristic size pf the open system. We should point out )\+(R)Tcr:)\_o_3 Eaz in two dimensions, (77)
that Gaspard has discussed a reformulation of the escape-rate 2 v

formula so as to be able to express the diffusion coefficient ) )
in terms of the Hausdorff dimension of the fractal repeller@nd for three dimensions

Min(R)=A2. +Dg*(—In(n/2)—=C—2+In2)- - -

with

[9]. Using his method we can easily see that the dimension A0 D_/8In2—3
of the fractal repeller is slightly less than the embedding XﬁqaiR)Tcr:ﬁx— __2(—)'
dimension (3 ford=2, and 5 ford=3) by terms of order v v 4
1/L2. These results are to be expected for the Lorentz gas, 0

since diffusion is normal, and the escape-rate formula should NE(R)T :m B _az< 7—81n 2)
be free of difficulties. min o v 4 ’

Gaspard and Bard44] have examined the chaotic prop-
erties of the periodic open Lorentz gas at sufficiently high N N ﬁs D—,
densities that there are no infinite horizons for the moving (Amad R)+ Ain( R)) Ter=—=— —0"
particle. They used numerical simulations, and obtained in-
dependent results for the Lyapunov exponents and for the KS It is also interesting to compare the KS entropy on the
entropy on the repeller, as functions of the system dize, repeller with its value in an infinite system. To make this a
Then they compared these results with numerical and witlbit more concrete, we consider a slab geometry, i.e., absorb-
approximate analytical values for the diffusion coefficienting walls atx= *+L/2, and
and found good agreement.

At the present time there are no computer simulations of
open, random Lorentz gases, to which our analytic results
can be compared, but we may compare our results to intui-
tive expectations. To do this we will need to note that theThen with Eqs.(42) and(68), respectively, we obtain
average collision frequency,., or equivalently, the mean
free time between collisions on the repellef,= 1/v,,, dif- hes(R)=hCc+
fer from the corresponding quantities in an infinite system. In KS KS

(78)

3

q=—. (79)

0
%S— —) D(#/L)? intwo dimensions,

2

fact 7., can explicitly be calculated by using an expression
analogous to Eq(28), where IHU- | is replaced byr and the

factor v, is dropped. Together with the expressions?ﬁfr hgs(R)= hﬂs+

in two and three dimension Eq&26), (A3), and (A4) we
obtain an expression for the mean free time between colli-

(80)

hKS 2 . . .
7—2 D(w/L)- inthree dimensions.

(81

sions on the repeller given by

This result shows that the mean free time on the repeller

Thus the KS entropy increases above its infinite system value
when measured in standard time units. As in the case of the
Lyapunov exponent, this trend is only due to the increased
scattering rate on the repeller. When measured in natural
units on the repeller, the KS entropy has an especially simple
form

0

is smaller than that in the infinite system. In addition, its hes(R) :h_KS__E( /L)2  in two dimensions
dependence on the escape-rate and equilibrium collision fre- kS T T2\ '
quency is the same in two and three dimensions. Thus, we (82
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h&s 6. In the next paper in this series we will consider the case
hks(R) Ter=—, 27(77/L)2 in three dimensions. of a Lorentz gas with a charged moving patrticle placed in an
83) external electric field as well as in a random array of scatter-
ers. Then a Gaussian thermostat is applied which keeps the
We conclude with a number of points: kinetic energy of the moving particle fixed. The system
1. The principal problem with the escape-rate method agventually reaches a nonequilibrium steady state. We will
an analytical method for computing transport coefficients calculate dynamical properties of the moving particle in this
apart from the inherent difficulties involved in calculating nonequilibrium steady state and compare with the results of
dynamical quantities, is that as yet we have no analyticafomputer simulations. A preliminary version of this work
methods for calculating the KS entropy on the repeller, in-has already been publishg22,23).
dependently of the escape-rate formula. At the moment we

can only use analytic techniques to calculate the diffusion ACKNOWLEDGMENTS
coefficients and the Lyapunov exponents, leaving the KS en- ,
tropy as a quantity to be derived from them. A.L. was partially supported by the SFB 262 of the Deut-

2" 1t would be valuable to have some results from com-Sche Forschungsgemeinschaft. J.R.D. wishes to acknowledge

puter simulations with which to compare the results obtaine¢UPPOrt from the National Science Foundation under Grant
here. No. NSF PHY-96-00428. H.v.B. acknowledges support by

3. As mentioned earlier, the information and HausdorffFOM and by the NWO Priority Program Non-Linear Sys-
dimension of the fractal repellers in both two and three di-t€Ms. which are financially supported by the “Nederlandse
mensions are very close to the full phase space dimensionSrganisatie voor Wetenschappelijk Onderz¢kVO).
three, for the Lorentz gas on the plane, and five, for the
Lorentz gas in space, but are smaller than these values bPPENDIX A: THE DISTRIBUTION OF TIMES OF FREE
terms of orderL 2. This is a simple consequence of the FLIGHT
application of Kaplan—Yorke type formulas to fractal repel-

lers[15]. For the information dimension we obtain It is useful to have an expression for the mean collision

frequency or, equivalently, for the mean free time between
collisions for trajectories on the repeller. Here we argue that
d|=3—21++0(1/L4) for d=2, (84)  such expressions can be obtained in a simple way from a
0 Lorentz—Boltzmann equation, modified so as to include a
new variabler which is the time since the last collision. For
the distribution of particles surviving in the system at titne

with position r, velocity v, and with timer since the last
collision we propose the equation

d=5-2——+0(1L% for d=3, (89
min

where y is the escape rate andj , 2, are the positive
Lyapunov exponent, _and the _ s_,maller of the positive ifFJrl;'VfFJr;' ifFJrifF:_va (A1)
Lyapunov exponents in the infinite system, respectively. at I ar
Gaspard and Baras have used these fractal dimensions to
express the diffusion coefficient in terms of the Hausdorffwith
and information dimensions of the fractal repeller for the two
dimensional casg9,14]. - -, do1 - N ea A s -,

4. A problem for further study is to extend the calcula- TF(Fv",7=00)=na Uf dnO(—n-v)[n-v|fg(r,v’.t).
tions given here to a system of many interacting particles (A2)
such as gases of hard disks or hard spheres. Some progress in
this direction has been made, and it is now possible to geEquation(Al) can be derived in a way similar to the heuris-
analytic results for the KS entropy and the largest Lyapunovic derivation of the usual Lorentz—Boltzmann equation, but
exponents for dilute hard disk or hard sphere gases, in equé few changes have to be made. Scattering and absorption at
librium, in the thermodynamic limif19-21]. It would be the boundary are the only mechanisms which will reduce the
very interesting to apply the escape-rate formalism to th@wumber of particles with a certain time of free flight. Scat-
transport coefficients, such as the shear and bulk viscositietering will also act as a source of particles but always with a
and thermal conductivity, appropriate for fluid systems, ustime of free flight7=0. This effect is taken care of by the
ing the method of Ref(8], and to determine the effects of initial condition Eq.(A2). The dependence of the distribution
the fractal repeller on the dynamical quantities. of times of free flight on both position and velocity is due to

5. The thermodynamic formalism for hyperbolic chaotic the non-uniformity in these variables tf resulting from the
systems provides a very useful method for expressing mangbsorbing boundary condition in combination with a higher
of the chaotic properties of both open and closed systems isurvival rate for particles that collide more frequentiiey
terms of one quantity, the topological press{#¢ The use diffuse more slowly. We note one important difference,
of kinetic theory to evaluate the topological pressure for awvhich will become crucial, if the effect on external fields is
dilute random Lorentz gas should certainly be possible, butonsidered. In the Boltzmann equation for the one particle
has not yet been undertaken. phase space densify, which is based on the consideration
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of the number of particles in a fixed volume element in phas@he angley, (¢, ¢, a) is implicitly defined by
space, the streaming term is derived from

(3139)(qfg(q,t)) =0 with g=(r,v). This is due to the con- . )
servation of particles in the absence of scattering events. In U-ey,=[U-eyl
the derivation off r we have to consider the number of par-

ticles with a certain time of free flight after the last scat- . C

tering event and count how many of them are still there awhere¢' « are the scattering a_ngles. Th? distribution func-
time stepdt later. We therefore have to use a comovingtlon has to obey the normalization condition
frame, which means that the streaming part of the equation

for fr has the formq(d/dq)fe(q,t). A term analogous to JZﬂd¢p(¢):1_ (B3)
0

fs(9q9/9q) cannot appear in a comoving frame since it

counts the difference of ingoing and outgoing particles in a

fixedphase space volume element. The average in EqB1) (...) is in our case the average
The solution of this equation can be obtained in two andover the distribution of times of free flight, scattering angles,

three dimensions as a gradient expanssee Eq. 2f. The  velocities and space multiplied with the survival probability,

solution strategy is completely analogous to that used foms defined in Eq(24). Since, contrary to the case of motion

solving the ELBE in two and three dimensions. For two di-in an external field 23], the equation of motion fou is the

coswl)

sinyy B2

mensions we obtain same for an open system as for an infinite system when there

5 is no external field, we can use here the expression of

Yo(7)=ve ", |U-e,| derived in I. To evaluate the ensemble average in the

B Eq. (B1), we have to use the gradient expansions for the
J(=(:—vre ", (A3)  survival probability and the distribution of times of free

flight Egs. (14), (12). Since the ensemble average involves

~r 1{ 1 1 S an average over the velocities, the term proportional to
po(7)= ;( vt g (v7) )e : v-Vn and all other nonscalar terms vanish. Therefore the
deviation of P() from its isotropic value, (2) ! can at
In three dimensions we obtain most be of ordeV?2n. Then, due to the normalization con-
dition Eq.(B3) this deviation must also be be proportional to
Tﬂg(r)=ve‘”, cosfmy), where m is a positive integer. Consequently the
only additional term of ordeF?n in the expression for the
?,Zf(r) = pre "7, (A4) maximum Lyapunov exponent would come from multiplying
the zeroth-order term(in the gradient ofn) of (In|U
_ 1 -é(zp)|> (which is independent ofy) with the term of order
Uh(r)= 3| V7'+§(VT)2 e " V2n in the expression foP(y). But this averages to zero

due to the factor cosfy). Thus we may use an isotropic
distribution in the angle) when calculating the largest ei-
genvalue of the product of random matrices, and we then
obtain Eq.(72).
We can understand this result also in a more intuitive
APPENDIX B: THE DISTRIBUTION OF way. This demonstration proceeds in four steps.
EIGENDIRECTIONS P(#) (1) An isotropic precollisional distribution of will give

In order to calculate the maximum Lyapunov exponent offise after scattering to anisotropies of ordeq?. To under-
a product of uncorrelated random X2 matrices Stand this one should note that anglesand ¢+ 7 can be
MU(7,¢,a), we must take into account the fact that theidentified. This merely amounts to an interchange of refer-
matricesU; do not in general commute with each other. In €nce and tangent trajectory. If the contributions of such angle
order to use standard theorems to calculate the largest eigepairs are averaged, the term lineawirVn cancels. The sole
value of a product of random matrices, we have to determingource for the anisotropy in this case is the anisotropy of the
the distributionP () of the angley, generated by acting survival probability as a function of velocity.
with the random matrixU on the unit vector é(¢) (2) A completely anisotropic precollisional distribution,
= (cosy,siny) [18]. If this distribution is not isotropic iny, ~ Of form &(¢— ) say, will give rise to a postcollisional
the proper form ofP(#) must be determined from the solu- dis_tribution that is isotropic iny, up to corrections of order

As stated before above E(p7) the same results may be
obtained by integrating over the variableg and y.

tion of an appropriate Frobenius-Perron equation. —q?. This is a consequence of the isotropic distribution of
In our case, the Frobenius—Perron equation for this distrithe azimuthal scattering angte resulting from the random
bution is given by distribution of scatterers. Again, the anisotropy is due to an-

isotropy of the survival probability and the linear term in

2w e . . \er .
P(i) = du' PO W S(th— ' b, (Bl v-Vn vanishes due to identification @f and = 7.
) Jo VPWHY—duly $)). (BY (3) If we require that the anisotropic part of the distribu-
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tion of ¢ cancels on averaging, so does the isotropic part oadded to that just because of the result emerging) hége

the distribution just after a collision, that is, in an ensemblecontribution to the postcollisional anisotropy has to be of

average in which we put together all contributions of en-order?_

semble members with a collision at an equal position and The postcollisional anisotropies resulting from the isotro-

time. pic part of the precollisional distribution are fully accounted
(4) Now since the precollisional anisotropic distribution for by Eq. (24) and so this expression gives correct results

itself is of ordera2 according to(1) (and nothing will be through ordeﬁz.
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